Package ‘Lahman’
February 19, 2015

Type Package
Title Sean Lahman’s Baseball Database
Version 3.0-1
Date 2014-09-05
Author Michael Friendly [aut, cre], Dennis Murphy [ctb], Martin Monkman [ctb], Chris Dalzell [ctb]
Maintainer Michael Friendly <friendly@yorku.ca>
Description This package provides the tables from Sean Lahman's Baseball Database as a set of R data.frames. It uses the data on pitching, hitting and fielding performance and other tables from 1871 through 2013, as recorded in the 2014 version of the database.
Depends R (>= 2.10)
Suggests lattice, ggplot2, googleVis, data.table, vcd, plyr, reshape2, zipcode
License GPL
URL http://lahman.r-forge.r-project.org/
LazyLoad yes
LazyData yes
Repository CRAN
Repository/R-Forge/Project lahman
Repository/R-Forge/Revision 51
Repository/R-Forge/DateTimestamp 2014-09-07 18:11:29
Date/Publication 2014-09-13 10:55:03
NeedsCompilation no

R topics documented:

Lahman-package ... 2
AllstarFull ... 5
Description

This database contains pitching, hitting, and fielding statistics for Major League Baseball from 1871 through 2013. It includes data from the two current leagues (American and National), the four other "major" leagues (American Association, Union Association, Players League, and Federal League), and the National Association of 1871-1875.

This database was created by Sean Lahman, who pioneered the effort to make baseball statistics freely available to the general public. What started as a one man effort in 1994 has grown tremendously, and now a team of researchers have collected their efforts to make this the largest and most accurate source for baseball statistics available anywhere.

This database, in the form of an R package offers a variety of interesting challenges and opportunities for data processing and visualization in R.
The main form of this database is a relational database in Microsoft Access format. The design follows these general principles. Each player is assigned a unique code (playerID). All of the information in different tables relating to that player is tagged with his playerID. The playerIDs are linked to names and birthdates in the Master table. Similar links exist among other tables via analogous *ID variables.

The database is comprised of the following main tables:

Master Player names, dates of birth, death and other biographical info
Batting batting statistics
Pitching pitching statistics
Fielding fielding statistics

A collection of other tables is also provided:

Teams:

- **Teams** yearly stats and standings
- **TeamsHalf** split season data for teams
- **TeamsFranchises** franchise information

Post-season play:

- **BattingPost** post-season batting statistics
- **PitchingPost** post-season pitching statistics
- **FieldingPost** post-season fielding data
- **SeriesPost** post-season series information

Awards:

- **AwardsManagers** awards won by managers
- **AwardsPlayers** awards won by players
- **AwardsShareManagers** award voting for manager awards
- **AwardsSharePlayers** award voting for player awards

Hall of Fame: links to Master via playerID
AllstarFull

HallOfFame Hall of Fame voting data

Others tables:
AllstarFull - All-Star games appearances; Managers - managerial statistics; FieldingOF - outfield position data; ManagersHalf - split season data for managers; Salaries - player salary data; Appearances - data on player appearances; Schools - Information on schools players attended; SchoolsPlayers - Information on schools players attended, by player;
Variable label tables are provided for some of the tables:
battlingLabels, pitchingLabels, fieldingLabels

Author(s)
Michael Friendly and Dennis Murphy
Maintainer: Michael Friendly <friendly@yorku.ca>

Source

<table>
<thead>
<tr>
<th>AllstarFull</th>
</tr>
</thead>
<tbody>
<tr>
<td>AllstarFull table</td>
</tr>
</tbody>
</table>

Description
All Star appearances by players

Usage
data(AllstarFull)

Format
A data frame with 4912 observations on the following 8 variables.

playerID Player ID code
yearID Year
gameNum Game number (for years in which more than one game was played)
gameID Game ID code
teamID Team; a factor
lgID League: a factor with levels AL NL
GP Game played (zero if player did not appear in game)
startingPos If the player started, what position he played

Source

Examples

data(AllStarFull)

find number of appearances by players in the All Star games
player_appearances <- with(AllStarFull, rev(sort(table(playerID))))

How many All-Star players, in total?
length(player_appearances)

density plot of the whole distribution
plot(density(player_appearances), main="Player appearances in All Star Games")
rug(jitter(player_appearances))

who has played in more than 10 ASGs?
player_appearances[player_appearances > 10]
hist(player_appearances[player_appearances > 10])

Hank Aaron's All-Star record:
subset(AllStarFull, playerID == "aaronha01")

Years that Stan Musial played in the ASG:
with(AllStarFull, yearID[playerID == "musiast01"])

Starting positions he played (NA means did not start)
with(AllStarFull, startingPos[playerID == "musiast01"])

All-Star rosters from the 1966 ASG
subset(AllStarFull, gameID == "NLS196607120")

All-Stars from the Washington Nationals
subset(AllStarFull, teamID == "WAS")

Teams with the fewest All-Stars
rare <- names(which(table(AllStarFull$teamID) < 10))

Records associated with the 'rare' teams:
(There are two teamID typos: can you spot them?)
subset(AllStarFull, teamID %in% rare)
Appearances

Description
Data on player appearances

Usage
`data(Appearances)`

Format
A data frame with 98146 observations on the following 20 variables.

- `yearID` Year
- `teamID` Team; a factor
- `lgID` League; a factor with levels AA AL FL NL PL UA
- `playerID` Player ID code
- `G_all` Total games played
- `GS` Games started
- `G_batting` Games in which player batted
- `G_defense` Games in which player appeared on defense
- `G_p` Games as pitcher
- `G_c` Games as catcher
- `G_1b` Games as firstbaseman
- `G_2b` Games as secondbaseman
- `G_3b` Games as thirdbaseman
- `G_ss` Games as shortstop
- `G_1f` Games as leftfielder
- `G_cf` Games as centerfielder
- `G_rf` Games as right fielder
- `G_of` Games as outfielder
- `G_dh` Games as designated hitter
- `G_ph` Games as pinch hitter
- `G_pr` Games as pinch runner

Details
The Appearances table in the original version has some incorrect variable names. In particular, the 5th column is `career_year`.
Source

Examples

data(Appearances)

some test cases
Henry Aaron spent the last two years of his career as DH in Milwaukee
subset(Appearances, playerID == 'aaronha01')
Herb Washington, strictly a pinch runner for Oakland in 1974-5
subset(Appearances, playerID == 'washihe01')
subset(Appearances, playerID == 'thomeji01')
subset(Appearances, playerID == 'hairsje02')

Appearances for the 1984 Cleveland Indians
subset(Appearances, teamID == "CLE" & yearID == 1984)

if (require(reshape2) & require(plyr)) {
Appearances for Pete Rose during his career:
prose <- subset(Appearances, playerID == "rosepe01")

What was Pete Rose's primary position each year
of his career?

prose_melt <- melt(prose, id = c("yearID", "teamID"),
 measure = 9:17)
Split out the position from variable
prose_melt <- cbind(prose_melt, colsplit(prose_melt$variable,
 "_", names = c("G", "pos")))

Two grouping variables because of an in-season trade in 1984
primary_pos <- ddply(prose_melt, .(yearID, teamID), summarise,
 top_pos = pos[which.max(value)],
 games = max(value))

primary_pos

Most pitcher appearances each year since 1950
ddply(subset(Appearances, yearID >= 1950), .(yearID), summarise,
 maxPitcher = playerID[which.max(G_p)],
 maxAppear = max(G_p))

Individuals who have played all 162 games since 1961
all162 <- ddply(subset(Appearances, yearID > 1960), .(yearID), summarise,
 allGamers = playerID[G_all == 162])

Number of all-gamers by year
table(all162$yearID) }
Description
Award information for managers awards

Usage
data(AwardsManagers)

Format
A data frame with 169 observations on the following 6 variables.

playerID Manager (player) ID code
awardID Name of award won
yearID Year
lgID League; a factor with levels AL NL
tie Award was a tie (Y or N)
notes Notes about the award

Source

Examples

Post-season managerial awards

Number of recipients of each award by year
with(AwardsManagers, table(yearID, awardID))

1996 award winners
subset(AwardsManagers, yearID == 1996)

AL winners of the BBWAA managerial award
subset(AwardsManagers, awardID == "BBWAA Manager of the year" &
 lgID == "AL")

Tony LaRussa’s manager of the year awards
subset(AwardsManagers, playerID == "larusto01")
AwardsPlayers

Awards Players table

Description

Award information for players awards

Usage

data(AwardsPlayers)

Format

A data frame with 5972 observations on the following 6 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>playerID</td>
<td>Player ID code</td>
</tr>
<tr>
<td>awardID</td>
<td>Name of award won</td>
</tr>
<tr>
<td>yearID</td>
<td>Year</td>
</tr>
<tr>
<td>lgID</td>
<td>League; a factor with levels AA AL ML NL</td>
</tr>
<tr>
<td>tie</td>
<td>Award was a tie (Y or N)</td>
</tr>
<tr>
<td>notes</td>
<td>Notes about the award</td>
</tr>
</tbody>
</table>

Source

Examples

data(AwardsPlayers)

Which awards have been given and how many?
with(AwardsPlayers, table(awardID))
awardtab <- with(AwardsPlayers, table(awardID))
library('lattice')
dotplot(awardtab)

Restrict to MVP awards
mvp <- subset(AwardsPlayers, awardID == 'MVP')
Who won in 1994?
mvp[mvp$yearID == 1994L,]

goldglove <- subset(AwardsPlayers, awardID == 'Gold Glove')
which players won most often?
GGcount <- table(goldglove$playerID)
GGcount[GGcount>10]

Triple Crown winners
subset(AwardsPlayers, awardID == "Triple Crown")
Simultaneous Triple Crown and MVP winners
(compare merged file to TC)
TC <- subset(AwardsPlayers, awardID == "Triple Crown")
MVP <- subset(AwardsPlayers, awardID == "Most Valuable Player")
keepvars <- c("playerID", "yearID", "lgID.x")
merge(TC, MVP, by = c("playerID", "yearID"))[,keepvars]

AwardsShareManagers
AwardsShareManagers table

Description

Award voting for managers awards

Usage

`data(AwardsShareManagers)`

Format

A data frame with 385 observations on the following 7 variables.

- `awardID` name of award votes were received for
- `yearID` Year
- `lgID` League; a factor with levels AL NL
- `playerID` Manager (player) ID code
- `pointsWon` Number of points received
- `pointsMax` Maximum number of points possible
- `votesFirst` Number of first place votes

Source

Examples

Voting for the BBWAA Manager of the Year award by year and league

`require(plyr)`

Sort in decreasing order of points by year and league

`MOYsort <- ddply(AwardsShareManagers, .(yearID, lgID), arrange, desc(pointsWon))`
Any unanimous winners?
subset(AwardsShareManagers, pointsWon == pointsMax)

OK, how about highest proportion of possible points?
AwardsShareManagers[which(AwardsShareManagers, which.max(pointsWon/pointsMax)),]

Bobby Cox’s MOY vote tallies
subset(AwardsShareManagers, playerID == "coxbo01")

AwardsSharePlayers
AwardsSharePlayers table

Description
Award voting for managers awards

Usage
data(AwardsSharePlayers)

Format
A data frame with 6617 observations on the following 7 variables.

- **awardID** name of award votes were received for
- **yearID** Year
- **lgID** League; a factor with levels AL ML NL
- **playerID** Player ID code
- **pointsWon** Number of points received
- **pointsMax** Maximum number of points possible
- **votesFirst** Number of first place votes

Source

Examples

Vote tallies for post-season player awards
require(plyr)

Which awards are represented in this data frame?
unique(AwardsSharePlayers$awardID)
Batting

Sort the votes for the Cy Young award in decreasing order.
For the first few years, the award went to the best pitcher
in both leagues.

cyvotes <- ddply(subset(AwardsSharePlayers, awardID == "Cy Young"),
 .(yearID, lgID), arrange, desc(pointsWon))

2012 votes
subset(cyvotes, yearID == 2012)

Top three votegetters each year by league
cya_top3 <- ddply(cyvotes, .(yearID, lgID), function(d) head(d, 3))

unanimous Cy Young winners
subset(cyvotes, pointsWon == pointsMax)

Top five pitchers with most top 3 vote tallies in CYA
head(with(cya_top3, rev(sort(table(playerID)))), 5)

Ditto for MVP awards
MVP <- subset(AwardsSharePlayers, awardID == "MVP")
MVP_top3 <- ddply(MVP, .(yearID, lgID),
 function(d) head(arrange(d, desc(pointsWon)), 3))
head(with(MVP_top3, rev(sort(table(playerID)))), 5)

Batting

Batting table

Description

Batting table - batting statistics

Usage

data(Batting)

Format

A data frame with 97889 observations on the following 24 variables.

playerID Player ID code
yearID Year
stint player's stint (order of appearances within a season)
teamID Team; a factor
lgID League; a factor with levels AA AL FL NL PL UA
G Games: number of games in which a player played
G_batting Game as batter
AB At Bats
R Runs
H Hits: times reached base because of a batted, fair ball without error by the defense
X2B Doubles: hits on which the batter reached second base safely
X3B Triples: hits on which the batter reached third base safely
HR Homeruns
RBI Runs Batted In
SB Stolen Bases
CS Caught Stealing
BB Base on Balls
SO Strikeouts
IBB Intentional walks
HBP Hit by pitch
SH Sacrifice hits
SF Sacrifice flies
GIDP Grounded into double plays
G_old Old version of games (deprecated)

Details
Variables X2B and X3B are named 2B and 3B in the original database

Source

See Also
battingStats for calculating batting average (BA) and other derived statistics
baseball for a similar dataset, but a subset of players who played 15 or more seasons.
Baseball for data on batting in the 1987 season.

Examples

data(Batting)
head(Batting)
require('plyr')

calculate batting average and other stats
batting <- battingStats()
add salary to batting data; need to match by player, year and team
batting <- merge(batting,
 Salaries[,c("playerID", "yearID", "teamID", "salary")],
 by=c("playerID", "yearID", "teamID"), all.x=TRUE)

Add name, age and bat hand information:
masterInfo <- Master[, c('playerID', 'birthYear', 'birthMonth',
 'nameLast', 'nameFirst', 'bats')]
battery <- merge(batting, masterInfo, all.x = TRUE)
battery$age <- with(battery, yearID - birthYear -
 ifelse(birthMonth < 10, 0, 1))

batting <- arrange(batting, playerID, yearID, stint)

Generate a ggplot similar to the NYT graph in the story about Ted
Williams and the last .400 MLB season

Restrict the pool of eligible players to the years after 1899 and
players with a minimum of 450 plate appearances (this covers the
strike year of 1994 when Tony Gwynn hit .394 before play was suspended
for the season - in a normal year, the minimum number of plate appearances is 502)
eligibleHitters <- subset(batting, yearID >= 1900 & PA > 450)

Find the hitters with the highest BA in MLB each year (there are a
few ties). Include all players with BA > .400
topHitters <- ddply(eligibleHitters, (yearID), subset, (BA == max(BA)) | BA > .400)

Create a factor variable to distinguish the .400 hitters
topHitters$ba400 <- with(topHitters, BA > 0.400)

Sub-data frame for the .400 hitters plus the outliers after 1950
(averages above .380) - used to produce labels in the plot below
bignames <- rbind(subset(topHitters, ba400),
 subset(topHitters, yearID > 1950 & BA > 0.380))

Cut to the relevant set of variables
bignames <- subset(bignames, select = c('playerID', 'yearID', 'nameLast',
 'nameFirst', 'BA'))

Ditto for the original data frame
topHitters <- subset(topHitters, select = c('playerID', 'yearID', 'BA', 'ba400'))

Positional offsets to spread out certain labels
#
NL TC JJ TC GS TC RH GS HH RH RH BT TW TW RC GB TG
bignames$xoffset <- c(0, 0, 0, 0, 0, 0, 0, -8, 0, 3, 0, 0, -2, 0, 0)
bignames$yoffset <- c(0, 0, -0.003, 0, 0, 0, 0, -0.004, 0, 0, 0, 0, -0.003, 0, 0) + 0.002

require('ggplot2')
ggplot(topHitters, aes(x = yearID, y = BA)) +
 geom_point(aes(colour = ba400), size = 2.5) +
 geom_hline(yintercept = 0.400, size = 1) +
 geom_text(data = bignames, aes(x = yearID + xoffset, y = BA + yoffset,
 label = nameLast), size = 3) +
scale_colour_manual(values = c('FALSE' = 'black', 'TRUE' = 'red')) +
ylim(0.330, 0.430) +
xlab('Year') +
scale_y_continuous('Batting average',
 breaks = seq(0.34, 0.42, by = 0.02),
 labels = c('340', '360', '380', '400', '420')) +
geom_smooth() +
theme(legend.position = 'none')

Total home runs by year
totalHR <- ddply(Batting, .(yearID), summarise,
 HomeRuns = sum(as.numeric(HR), na.rm=TRUE),
 Games = sum(as.numeric(G_batting), na.rm=TRUE)
)
plot(HomeRuns ~ yearID, data=subset(totalHR, yearID<=1918))

plot(HomeRuns/Games ~ yearID, data=subset(totalHR, yearID<=1918))

plot(HomeRuns ~ yearID, data=totalHR)

plot(HomeRuns/Games ~ yearID, data=totalHR)

battingLabels

Variable Labels

Description

These data frames provide descriptive labels for the variables in the Batting, Pitching and Fielding files (and related *Post files). They are useful for plots and other output using Label.

Usage

```r
data(battingLabels)
data(fieldingLabels)
data(pitchingLabels)
```

Format

Each is data frame with observations on the following 2 variables.

<table>
<thead>
<tr>
<th>variable</th>
<th>variable name</th>
</tr>
</thead>
<tbody>
<tr>
<td>label</td>
<td>variable label</td>
</tr>
</tbody>
</table>
BattingPost

See Also

Label

Examples

data(battingLabels)
str(battingLabels)

require(plyr)
find and plot maximum number of homers per year
batHR <- ddply(subset(Batting, !is.na(HR)), .(yearID),
summarise, max=max(HR))

with(batHR, {
 plot(yearID, max,
 xlab="yearID", ylab=paste("Maximum", Label("HR")),
 cex=0.8)
 lines(lowess(yearID, max), col="blue", lwd=2)
 abline(lm(max ~ yearID), col="red", lwd=2)
})

BattingPost

Description

Post season batting statistics

Usage

data(BattingPost)

Format

A data frame with 10900 observations on the following 22 variables.

yearID Year
round Level of playoffs
playerID Player ID code
teamID Team
lgID League; a factor with levels AA AL NL
G Games
AB At Bats
R Runs
H Hits
X2B Doubles
X3B Triples
HR Homeruns
RBI Runs Batted In
SB Stolen Bases
CS Caught stealing
BB Base on Balls
SO Strikeouts
IBB Intentional walks
HBP Hit by pitch
SH Sacrifices
SF Sacrifice flies
GIDP Grounded into double plays

Details
Variables X2B and X3B are named 2B and 3B in the original database

Source

Examples
Post-season batting data
Requires care since intra-league playoffs have evolved since 1969
Simplest case: World Series
require(plyr)

Create a sub-data frame for modern World Series play
ws <- subset(BattingPost, round == "WS" & yearID >= 1903)

Add some derived measures
ws <- mutate(ws, BA = ifelse(AB == 0, 0, round(H/AB, 3)),
 TB = H + X2B + 2 * X3B + 3 * HR,
 SA = ifelse(AB == 0, 0, round(TB/AB, 3)),
 PA = AB + BB + IBB + HBP + SH + SF,
 OB = H + BB + IBB + HBP,
 OBP = ifelse(AB == 0, 0, round(OB/PA, 3)))

Players with most appearances in the WS:
with(subset(BattingPost, round == "WS"), rev(sort(table(playerID))))[1:10]

OK, how about someone who is *not* a Yankee?
with(subset(BattingPost, round == "WS" & teamID != "NYA"),
Description

The `Batting` does not contain batting statistics derived from those present in the data.frame. This function calculates batting average (BA), plate appearances (PA), total bases (TB), slugging percentage (SlugPct), on-base percentage (OBP), on-base percentage + slugging (OPS), and batting average on balls in play (BABIP) for each record in a Batting-like data.frame.

Usage

```r
battingStats(data = Lahman::Batting,
               idvars = c("playerID", "yearID", "stint", "teamID", "lgID"),
               cbind = TRUE)
```

Arguments

- **data**: input data, typically `Batting`
- **idvars**: ID variables to include in the output data.frame
- **cbind**: If TRUE, the calculated statistics are appended to the input data as additional columns

Details

Standard calculations, e.g., BA <- H/AB are problematic because of the presence of NAs and zeros. This function tries to deal with those problems.

Value

A data.frame with all the observations in data. If cbind==FALSE, only the idvars and the calculated variables are returned.
Author(s)

Michael Friendly, Dennis Murphy

See Also

Batting, BatPost

Examples

```r
bstats <- battingStats()
str(bstats)
bstats <- battingStats(cbind=FALSE)
str(bstats)
```

Fielding

Fielding table

Description

Fielding table

Usage

`data(Fielding)`

Format

A data frame with 166991 observations on the following 18 variables.

- `playerID` Player ID code
- `yearID` Year
- `stint` player’s stint (order of appearances within a season)
- `teamID` Team; a factor
- `lgID` League; a factor with levels AA AL FL NL PL UA
- `POS` Position
- `G` Games
- `GS` Games Started
- `InnOuts` Time played in the field expressed as outs
- `PO` Putouts
- `A` Assists
- `E` Errors
- `DP` Double Plays
- `PB` Passed Balls (by catchers)
Fielding

WP Wild Pitches (by catchers)
SB Opponent Stolen Bases (by catchers)
CS Opponents Caught Stealing (by catchers)
ZR Zone Rating

Source

Examples

data(Fielding)
Basic fielding data

require(plyr)

Roberto Clemente’s fielding profile
pitching and catching related data removed
subset(Fielding, playerID == "clemero01")[, 1:13]

Yadier Molina’s fielding profile
PB, WP, SP and CS apply to catchers
subset(Fielding, playerID == "molinya01")

Pedro Martinez’s fielding profile
Notice what pitchers get away with in this data frame :)
subset(Fielding, playerID == "martipe02")

Table of games played by Pete Rose at different positions
with(subset(Fielding, playerID == "rosepe01"), xtabs(G ~ POS))

Career total G/PO/A/E/DP for Luis Aparicio
luis <- subset(Fielding, playerID == "aparilu01",
 select = c("G", "PO", "A", "E", "DP"))
colwise(sum)(luis)

Top ten 2B/SS in turning DPs
dpkey <- ddply(subset(Fielding, POS %in% c("2B", "SS")), "playerID", summarise,
 TDP = sum(DP, na.rm = TRUE))
head(arrange(dpkey, desc(TDP)), 10)

League average fielding statistics, 1961-present
fldg <- subset(Fielding, yearID >= 1961 & POS != "DH",
 select = c("yearID", "lgID", "POS", "Inn Outs",
 "PO", "A", "E"))
lgTotalsF <- ddply(fldg, .(yearID, lgID), numcolwise(sum, na.rm = TRUE))
(lgTotalsF <- mutate(lgTotalsF,
FieldingOF

Description

Outfield position data: information about positions played in the outfield

Usage

data(FieldingOF)

Format

A data frame with 12028 observations on the following 6 variables.

- playerID Player ID code
- yearID Year
- stint player’s stint (order of appearances within a season)
- Glf Games played in left field
- Gcf Games played in center field
- Grf Games played in right field

Source

FieldingPost

Description

Post season fielding data

Usage

data(FieldingPost)
Format

A data frame with 11554 observations on the following 17 variables.

playerID Player ID code
yearID Year
teamID Team; a factor
lgID League; a factor with levels AL NL
round Level of playoffs
POS Position
G Games
GS Games Started
InnOuts Time played in the field expressed as outs
PO Putouts
A Assists
E Errors
DP Double Plays
TP Triple Plays
PB Passed Balls
SB Stolen Bases allowed (by catcher)
CS Caught Stealing (by catcher)

Source

Description

Hall of Fame table. This is comprised of the voting results for all candidates nominated for the Baseball Hall of Fame.

Usage

data(HallOfFame)
Format

A data frame with 4054 observations on the following 8 variables.

- **playerID**: Player ID code
- **yearID**: Year of ballot
- **votedBy**: Method by which player was voted upon. See Details
- **ballots**: Total ballots cast in that year
- **needed**: Number of votes needed for selection in that year
- **votes**: Total votes received
- **inducted**: Whether player was inducted by that vote or not (Y or N)
- **category**: Category of candidate; a factor with levels Manager Pioneer/Executive Player Umpire

Details

This table links to the Master table via the playerID.

- **votedBy**: Most Hall of Fame inductees have been elected by the Baseball Writers Association of America (BBWAA). Rules for election are described in http://en.wikipedia.org/wiki/National_Baseball_Hall_of_Fame_and_Museum#Selection_process.

Source

Examples

```r
## Some examples for Hall of Fame induction data

data('HallOfFame')
require('plyr')    # extensive use of plyr for data manipulation
require('ggplot2')

### Some simple queries

# What are the different types of votedBy?
table(HallOfFame$votedBy)

# What was the first year of Hall of Fame elections?
sort(unique(HallOfFame$yearID))[1]

# Who comprised the original class?
subset(HallOfFame, yearID == 1936 & inducted == 'Y')

# Result of a player's last year on the BBWAA ballot
# Restrict to players voted by BBWAA:
HOFplayers <- subset(HallOfFame, votedBy == 'BBWAA' & category == 'Player')
```
Function to calculate number of years as HOF candidate, last pct vote, etc.
for a given player
HOFun <- function(d) {
 nyears <- nrow(d)
 fy <- d[nyears,]
 lastPct <- with(fy, 100 * round(votes/ballots, 3))
 data.frame(playerID = fy$playerID, nyears = fy$nyears,
 lastPct, lastYear = fy$yearID)
}

playerOutcomesHOF <- ddply(HOFplayers, .(playerID), HOFun)

How many voting years until election?
inducted <- subset(playerOutcomesHOF, induct == 'Y')
table(inducted$nyears)
barplot(table(inducted$nyears), main="Number of voting years until election",
ylab="Number of players", xlab="Years")

What is the form of this distribution?
require('vcd')
goodfit(inducted$nyears)
plot(goodfit(inducted$nyears), xlab='Number of years',
 main="Poissonness plot of number of years voting until election")
Ord_plot(table(inducted$nyears), xlab='Number of years')

First ballot inductees:
subset(playerOutcomesHOF, nyears == 1L & induct == 'Y')

Who took at least ten years on the ballot before induction?
(Doesn't include Bert Blyleven, who was inducted in 2011.)
subset(playerOutcomesHOF, nyears >= 10L & induct == 'Y')

Plots of voting percentages over time for the borderline HOF candidates, according to the BBWAA:

(1) Set up the data:
longTimers <- as.character(unlist(subset(playerOutcomesHOF,
 nyears >= 10, select = 'playerID')))
HOFlt <- subset(HallofFame, playerID %in% longTimers & votedBy == 'BBWAA')
HOFlt <- ddply(HOFlt, .(playerID), mutate,
 elected = ifelse(any(inducted == 'Y'), "Elected", "Not elected"),
 pct = 100 * round(votes/ballots, 3))

Plot the voting profiles:
ggplot(HOFlt, aes(x = yearID, y = pct,
 group = playerID)) +
ggtitle("Profiles of voting percentage for long-time HOF candidates") +
```r
geom_line() +
geom_hline(yintercept = 75, col = 'red') +
labs(list(x = "Year", y = "Percentage of votes")) +
facet_wrap(~ elected, ncol = 1)
```

Note: All but one of the players whose maximum voting percentage
was over 60% and was not elected by the BBWAA has eventually been inducted
into the HOF. Red Ruffing was elected in a 1967 runoff election while
the others have been voted in by the Veterans Committee. The lone
exception is Gil Hodges; his profile is the one that flatlines around 60%
for several years in the late 70s and early 80s.

Label

Extract the Label for a Variable

Description

Extracts the label for a variable from one or more of the `Labels` files.

Usage

```r
Label(var, labels)
```

Arguments

- `var`: name of a variable
- `labels`: label table(s) to search, a 2-column dataframe containing variable names and labels. The default is `rbind(battingLabels, pitchingLabels, fieldingLabels)`.

Value

Returns the variable label, or `var` if no label is found

Author(s)

Michael Friendly

See Also

`battingLabels`, `pitchingLabels`, `fieldingLabels`

Examples

```r
require(plyr)
# find and plot maximum number of homers per year
batHR <- ddply(subset(Batting, !is.na(HR)), .(yearID),
               summarise, max=max(HR))

with(batHR, (
plot(yearID, max,
  xlab=Label("yearID"), ylab=paste("Maximum", Label("HR")),
  cex=0.8)
lines(lowess(yearID, max), col="blue", lwd=2)
abline(lm(max ~ yearID), col="red", lwd=2)
}

LahmanData

Lahman Datasets

Description
This dataset gives a concise description of the data files in the Lahman package. It may be useful for computing on the various files.

Usage
data(LahmanData)

Format
A data frame with 24 observations on the following 4 variables.

file name of dataset
class class of dataset
nobs number of observations
nvar number of variables

Details
This dataset is generated using vcdExtra::datasets(package="Lahman") with some post-processing.

Examples
data(LahmanData)

# find ID variables in the datasets
IDvars <- lapply(LahmanData[, "file"], function(x) grep('.*ID', colnames(get(x)), value=TRUE))
names(IDvars) <- LahmanData[, "file"]
str(IDvars)
# vector of unique ID variables
unique(unlist(IDvars))

# which datasets have playerID?
names(which(sapply(IDvars, function(x) "playerID" %in% x)))

# Visualize relations among datasets via an MDS
```r
jaccard distance between two sets; assure positivity
jaccard <- function(A, B) {
 max(1 - length(intersect(A,B)) / length(union(A,B)), .00001)
}

distmat <- function(vars, FUN=jaccard) {
 nv <- length(vars)
 d <- matrix(0, nv, nv, dimnames=list(names(vars), names(vars)))
 for(i in 1:nv) {
 for (j in 1:nv) {
 if (i != j) d[i,j] <- FUN(vars[[i]], vars[[j]])
 }
 }
 d
}

do an MDS on distances
distID <- distmat(IDvars)
config <- cmdscale(distID)

pos=rep(1:4, length=nrow(config))
plot(config[,1], config[,2], xlab = "", ylab = "", asp = 1, axes=FALSE, main="MDS of ID variable distances of Lahman tables")
abline(h=0, v=0, col="gray80")
text(config[,1], config[,2], rownames(config), cex = 0.75, pos=pos, xpd=NA)
```

---

**Managers** | **Managers table**

### Description

Managers table: information about individual team managers, teams they managed and some basic statistics for those teams in each year.

### Usage

data(Managers)

### Format

A data frame with 3337 observations on the following 10 variables.

- **playerID**: Manager (player) ID code
- **yearID**: Year
- **teamID**: Team; a factor
- **lgID**: League; a factor with levels AA AL FL NL PL UA


Managers

inseason Managerial order. Zero if the individual managed the team the entire year. Otherwise denotes where the manager appeared in the managerial order (1 for first manager, 2 for second, etc.)

G Games managed
W Wins
L Losses
rank Team’s final position in standings that year
plyrMgr Player Manager (denoted by 'Y'); a factor with levels N Y

Source

Examples

library('plyr')
mgrsumm <- function(d) {
  df <- data.frame(with(d,
    nyear = length(unique(yearID)),
    yearBegin = min(yearID),
    yearEnd = max(yearID),
    nTeams = length(unique(teamID)),
    nfirst = sum(rank == 1L),
    W = sum(W),
    L = sum(L),
    WinPct = round(W/(W + L), 3))
  df
}
mgrTotals <- ddply(Managers, .(playerID), summarise,
  nyear = length(unique(yearID)),
  yearBegin = min(yearID),
  yearEnd = max(yearID),
  nTeams = length(unique(teamID)),
  nfirst = sum(rank == 1L),
  games = sum(W + L),
  W = sum(W),
  L = sum(L),
  WinPct = round(sum(W)/sum(W + L), 3))
mgrTotals <- merge(mgrTotals,
  subset(Master, !is.na(playerID),
    select = c('playerID', 'nameLast', 'nameFirst'),
    by = 'playerID')

########################################################################
# Some basic queries

```
Top 20 managers in terms of years of service:
head(arrange(mgrTotals, -nyear), 20)

Top 20 winningest managers (500 games minimum)
head(arrange(subset(mgrTotals, games >= 500), -WinPct), 20)

Hmm. Most of these are 19th century managers.
How about the modern era?
head(arrange(subset(mgrTotals, yearBegin >= 1900 & games >= 500), -WinPct), 20)

Top 10 managers in terms of percentage of titles (league or divisional) -
should bias toward managers post-1970 since more first place finishes
are available
head(arrange(subset(mgrTotals, yearBegin >= 1900 & games >= 500),
 -round(nfirst/nyear, 3)), 10)

How about pre-1969?
head(arrange(subset(mgrTotals,
 yearBegin >= 1900 & yearEnd <= 1969 & games >= 500),
 -round(nfirst/nyear, 3)), 10)
```

```
Density plot of the number of games managed:

library('ggplot2')
ggplot(mgrTotals, aes(x = games)) + geom_density(fill = 'red', alpha = 0.3) +
 labs(x = 'Number of games managed')

Who managed more than 4000 games?
subset(mgrTotals, games >= 4000)
Connie Mack had an advantage: he owned the Philadelphia A's :)

Table of Tony LaRussa's team finishes:
with(subset(Managers, playerId == 'larusto01'), table(rank))

To include zero frequencies, one alternative is the tabulate() function:
with(subset(Managers, playerId == 'larusto01'), tabulate(rank, 7))
```

```
Scatterplot of winning percentage vs. number of games managed (min 100)

ggplot(subset(mgrTotals, yearBegin >= 1900 & games >= 100),
 aes(x = games, y = WinPct)) + geom_point() + geom_smooth() +
 labs(x = 'Number of games managed')

Division titles
```
# Plot of number of first place finishes by managers with at least 8 years 
# of experience in the divisional era (>= 1969):

divMgr <- subset(mgrTotals, yearBegin >= 1969 & nyear >= 8)

# Response is the number of titles
ggplot(divMgr, aes(x = nyear, y = nfirst)) +
  geom_point(position = position_jitter(w = 0.2)) +
  labs(x = 'Number of years', y = 'Number of divisional titles') +
  geom_smooth()

# Response is the proportion of titles
ggplot(divMgr, aes(x = nyear, y = round(nfirst/nyear, 3))) +
  geom_point(position = position_jitter(w = 0.2)) +
  labs(x = 'Number of years', y = 'Proportion of divisional titles') +
  geom_smooth()

ManagersHalf table

**Description**

Split season data for managers

**Usage**

data(ManagersHalf)

**Format**

A data frame with 93 observations on the following 10 variables.

- **playerID**: Manager (player) ID code
- **yearID**: Year
- **teamID**: Team; a factor
- **lgID**: League; a factor with levels AL NL
- **inseason**: Managerial order. One if the individual managed the team the entire year. Otherwise denotes where the manager appeared in the managerial order (1 for first manager, 2 for second, etc.). A factor with levels 1 2 3 4 5
- **half**: First or second half of season
- **G**: Games managed
- **W**: Wins
- **L**: Losses
- **rank**: Team’s position in standings for the half
Source

Master table
Master table - Player names, DOB, and biographical info. This file is to be used to get details about players listed in the Batting, Pitching, and other files where players are identified only by playerID.

Usage
data(Master)

Format
A data frame with 18354 observations on the following 26 variables.
playerID A unique code assigned to each player. The playerID links the data in this file with records on players in the other files.
birthYear Year player was born
birthMonth Month player was born
birthDay Day player was born
birthCountry Country where player was born
birthState State where player was born
birthCity City where player was born
deathYear Year player died
deathMonth Month player died
deathDay Day player died
deathCountry Country where player died
deathState State where player died
deathCity City where player died
nameFirst Player’s first name
nameLast Player’s last name
nameGiven Player’s given name (typically first and middle)
weight Player’s weight in pounds
height Player’s height in inches
bats a factor: Player’s batting hand (left (L), right (R), or both (B))
throws a factor: Player’s throwing hand (left(L) or right(R))
debut Date that player made first major league appearance
finalGame Date that player made first major league appearance (blank if still active)
retroID ID used by retrosheet, http://www.retrosheet.org/
birthDate Player’s birthdate, in as.Date format
deathDate Player’s deathdate, in as.Date format

Details
debut, finalGame were converted from character strings with as.Date.

Source

Examples
data(Master); data(Batting)

## add player’s name to Batting data
Master$name <- paste(Master$nameFirst, Master$nameLast, sep=' ')
batting <- merge(Batting,
  Master[,c("playerID","name")],
  by="playerID", all.x=TRUE)

## batting and throwing
# right-handed batters are much less ambidexterous in throwing than left-handed batters
# (should only include batters)
BT <- with(Master, table(bats, throws))
require(vcd)
structable(BT)
mosaic(BT, shade=TRUE)

## Who is Shoeless Joe Jackson?
subset(Master, nameLast="Jackson" & nameFirst="Joe")
joeID <- c(subset(Master, nameLast="Jackson" & nameFirst="Joe")["playerID"])
subset(Batting, playerID=joeID)
subset(Fielding, playerID=joeID)
### Description

Pitching table

### Usage

```r
data(Pitching)
```

### Format

A data frame with 42583 observations on the following 30 variables.

- `playerID` Player ID code
- `yearID` Year
- `stint` player’s stint (order of appearances within a season)
- `teamID` Team; a factor
- `lgID` League; a factor with levels AA AL FL NL PL UA
- `W` Wins
- `L` Losses
- `G` Games
- `GS` Games Started
- `CG` Complete Games
- `SHO` Shutouts
- `SV` Saves
- `IPouts` Outs Pitched (innings pitched x 3)
- `H` Hits
- `ER` Earned Runs
- `HR` Homeruns
- `BB` Walks
- `SO` Strikeouts
- `BAopp` Opponent’s Batting Average
- `ERA` Earned Run Average
- `IBB` Intentional Walks
- `WP` Wild Pitches
- `HBP` Batters Hit By Pitch
- `BK` Balks
- `BFP` Batters faced by Pitcher
Pitching

GF  Games Finished
R  Runs Allowed
SH  Sacrifices by opposing batters
SF  Sacrifice flies by opposing batters
GIDP  Grounded into double plays by opposing batter

Source

Examples
# Pitching data
require(plyr)

#########################################################################
# cleanup, and add some other stats
#########################################################################

# Restrict to AL and NL data, 1901+
# All data re SH, SF and GIDP are missing, so remove
# Intentional walks (IBB) not recorded until 1955
pitching <- subset(Pitching, yearID >= 1901 & lgID %in% c("AL", "NL"))[-(28:30)]

# Approximate missing BAOpp values (most common remaining missing value)
pitching$BAOpp <- with(pitching, round((H/(BFP - BB - HBP)), 3))
# Compute WHIP (hits + walks per inning pitched -- lower is better)
pitching <- mutate(pitching,
  WHIP = round(((H + BB) * 3/IPouts, 2),
  KperBB = round(ifelse(yearID >= 1955,
   SO/(BB - IBB), SO/BB), 2))

#########################################################################
# some simple queries
#########################################################################

# Team pitching statistics, Toronto Blue Jays, 1993
tor93 <- subset(pitching, yearID == 1993 & teamID == "TOR")
arrange(tor93, ERA)

# Career pitching statistics, Greg Maddux
subset(pitching, playerID == "maddugr01")

# Best ERAs for starting pitchers post WWII
postwar <- subset(pitching, yearID >= 1946 & IPouts >= 600)
head(arrange(postwar, ERA), 10)

# Best K/BB ratios post-1955 among starters (excludes intentional walks)
post55 <- subset(pitching, yearID >= 1955 & IPouts >= 600)
post55 <- mutate(post55, KperBB = SO/(BB - IBB))
head(arrange(post55, desc(KperBB)), 10)

# Best K/BB ratios among relievers post-1950 (min. 20 saves)
head(arrange(subset(pitching, yearID >= 1950 & SV >= 20), desc(KperBB)), 10)

# Winningest pitchers in each league each year:

# Add name & throws information:
masterInfo <- Master[, c('playerID',
    'nameLast', 'nameFirst', 'throws')]
pitching <- merge(pitching, masterInfo, all.x=TRUE)

wp <- ddply(pitching, .(yearID, lgID), subset, W == max(W),
    select = c("playerID", "teamID", "W", "throws"))
anova(lm(formula = W ~ yearID + I(yearID^2) + lgID + throws, data = wp))

# an eye-catching, but naive, specious graph

require('ggplot2')
# compare loess smooth with quadratic fit

ggplot(wp, aes(x = yearID, y = W)) +
    geom_point(aes(colour = throws, shape=lgID), size = 2) +
    geom_smooth(method="loess", size=1.5, color="blue") +
    geom_smooth(method = "lm", se=FALSE, color="black", formula = y ~ poly(x,2)) +
    ylab("Maximum Wins") + xlab("Year") +
    ggtitle("Why can't pitchers win 30+ games any more?")

---

PitchingPost

**PitchingPost table**

**Description**

Post season pitching statistics

**Usage**

data(PitchingPost)

**Format**

A data frame with 4778 observations on the following 30 variables.

- playerID  Player ID code
- yearID     Year
round  Level of playoffs
teamID  Team; a factor
lgID  League; a factor with levels AA AL NL
W  Wins
L  Losses
G  Games
GS  Games Started
CG  Complete Games
SHO  Shutouts
SV  Saves
IPouts  Outs Pitched (innings pitched x 3)
H  Hits
ER  Earned Runs
HR  Homersuns
BB  Walks
SO  Strikeouts
BAopp  Opponents’ batting average
ERA  Earned Run Average
IBB  Intentional Walks
WP  Wild Pitches
HBP  Batters Hit By Pitch
BK  Balks
BFP  Batters faced by Pitcher
GF  Games Finished
R  Runs Allowed
SH  Sacrifice Hits allowed
SF  Sacrifice Flies allowed
GIDP  Grounded into Double Plays

Source
playerInfo  

Lookup Information for Players and Teams

Description

These functions use grep to lookup information about players (from the Master file) and teams (from the Teams file).

Usage

\[
\text{playerInfo}(\text{playerID}, \text{nameFirst}, \text{nameLast}, \text{data} = \text{Lahman::Master}, \text{extra} = \text{NULL}, \ldots)
\]

\[
\text{teamInfo}(\text{teamID}, \text{name}, \text{data} = \text{Lahman::Teams}, \text{extra} = \text{NULL}, \ldots)
\]

Arguments

- **playerID**: pattern for playerID
- **nameFirst**: pattern for first name
- **nameLast**: pattern for last name
- **data**: The name of the dataset to search
- **extra**: A character vector of other fields to include in the result
- **...**: other arguments passed to `grep`
- **teamID**: pattern for teamID
- **name**: pattern for team name

Value

Returns a data frame for unique matching rows from data

Author(s)

Michael Friendly

See Also

`grep`

Examples

\[
\text{playerInfo}("aaron")
\]

\[
\text{teamInfo}("CH", \text{extra}="park")
\]
Salaries

Description

Player salary data.

Usage

data(Salaries)

Format

A data frame with 23956 observations on the following 5 variables.

- `yearID` Year
- `teamID` Team; a factor
- `lgID` League; a factor
- `playerID` Player ID code
- `salary` Salary

Details

There is no real coverage of player’s salaries until 1985.

Source


Examples

```r
what years are included?
summary(Salaries$yearID)

how many players included each year?
table(Salaries$yearID)

Team salary data
require(plyr)

teamSalaries <- ddply(Salaries, .(lgID, teamID, yearID), summarise,
 Salary = sum(as.numeric(salary)))

Arrange in decreasing order within year and league:
teamSalaries <- ddply(teamSalaries, .(yearID, lgID), arrange, desc(Salary))
```
# Highest paid players each year:
maxSal <- ddply(Salaries, .(yearID), subset, salary == max(salary))
names <- apply(t(sapply(maxSal$playerID, playerInfo))[,2:3], 2, paste)
maxSal <- cbind(maxSal, names)
maxSal
plot(salary/100000 - yearID, data=maxSal, type='b', ylab='Salary (100,000$)')
# see the whole distribution
boxplot(salary/100000 - yearID, data=Salaries, col="lightblue")

# add salary to Batting data
batting <- merge(Batting,
    Salaries[,c("playerID", "yearID", "teamID", "salary")],
    by=c("playerID", "yearID", "teamID"), all.x=TRUE)
str(batting)

# Average salaries by teams, over years

require(plyr)
avesal <- ddply(Salaries, .(yearID, teamID, lgID), summarise,
salary= mean(salary)/100000)

# remove infrequent teams
tcount <- table(avesal$teamID)
avesal <- subset(avesal, avesal$teamID %in% names(tcount)[tcount>=15], drop=TRUE)
avesal$teamID <- factor(avesal$teamID, levels=names(tcount)[tcount>=15])
require(lattice)
xyplot(salary ~ yearID | teamID, data=avesal, ylab="Salary (100,000$)")

---

**Schools table**

**Description**

Information on schools players attended, by school

**Usage**

data(Schools)

**Format**

A data frame with 749 observations on the following 5 variables.

  - schoolID  school ID code
  - schoolName  school name
Schools

schoolCity  city where school is located
schoolState  state where school’s city is located
schoolNick  nickname for school’s baseball team

Source


Examples

require(plyr)

# how many different schools are listed in each state?
table(Schools$schoolState)

# top 20 schools
schoolInfo <- Schools[, c("schoolID", "schoolName", "schoolCity", "schoolState")]

schoolCount <- ddply(SchoolsPlayers, .(schoolID), summarise,
           players = length(schoolID))

schoolCount <- merge(schoolCount, schoolInfo, by="schoolID", all.x=TRUE)

# Arrange in decreasing order:
schoolCount <- arrange(schoolCount, desc(players))
head(schoolCount, 20)

# sum counts by state
schoolStates <- ddply(schoolCount, .(schoolState), summarise,
        players = sum(players),
        schools = length(schoolState))
str(schoolStates)
summary(schoolStates)

## Not run:
if(require(zipcode)) {
  # in lieu of more precise geocoding via schoolName,
  # find lat/long of Schools from zipcode file
  zips <- ddply(zipcode, .(city, state), summarize,
      latitude=mean(latitude), longitude=mean(longitude))
  colnames(zips)[1:2] <- c("schoolCity", "schoolState")
  str(zips)

  # merge lat/long from zips
  schoolsXY <- merge(Schools, zips, by=c("schoolCity", "schoolState"), all.x=TRUE)
  str(schoolsXY)

  # plot school locations
  with(subset(schoolsXY, schoolState != 'HI'),
       plot(jitter(longitude), jitter(latitude)))
}

}
SchoolsPlayers

Description

Information on schools players attended, by player

Usage

data(SchoolsPlayers)

Format

A data frame with 6147 observations on the following 4 variables.

playerID  Player ID code
schoolID  school ID code
yearMin  year player's college career started
yearMax  year player's college career ended

Source


Examples

data(SchoolsPlayers)
head(SchoolsPlayers)

### Q: What are the top universities for producing MLB players?
SPcount <- table(SchoolsPlayers$schoolID)
SPcount[SPcount>50]

library('lattice')
dotplot(SPcount[SPcount>50])
dotplot(sort(SPcount[SPcount>50]))

### Q: How many schools are represented in this dataset?
length(table(SchoolsPlayers$schoolID))

# Histogram of the number of players from each school who played in MLB:
with(SchoolsPlayers, hist(table(schoolID), xlab = 'Number of players',
                        main = ''))
**SeriesPost**

**SeriesPost table**

**Description**

Post season series information

**Usage**

data(SeriesPost)

**Format**

A data frame with 289 observations on the following 9 variables.

- `yearID` Year
- `round` Level of playoffs
- `teamIDwinner` Team ID of the team that won the series; a factor
- `lgIDwinner` League ID of the team that won the series; a factor with levels AL NL
- `teamIDloser` Team ID of the team that lost the series; a factor
- `lgIDloser` League ID of the team that lost the series; a factor with levels AL NL
- `wins` Wins by team that won the series
- `losses` Losses by team that won the series
- `ties` Tie games

**Source**


---

**Teams**

**Teams table**

**Description**

Yearly statistics and standings for teams

**Usage**

data(Teams)
Format

A data frame with 2745 observations on the following 48 variables.

- **yearID**  Year
- **lgID**  League; a factor with levels AA AL FL NL PL UA
- **teamID**  Team; a factor
- **franchID**  Franchise (links to TeamsFranchises table)
- **divID**  Team's division; a factor with levels C E W
- **Rank**  Position in final standings
- **G**  Games played
- **Ghome**  Games played at home
- **W**  Wins
- **L**  Losses
- **DivWin**  Division Winner (Y or N)
- **WCwin**  Wild Card Winner (Y or N)
- **Lgwin**  League Champion(Y or N)
- **WSwin**  World Series Winner (Y or N)
- **R**  Runs scored
- **AB**  At bats
- **H**  Hits by batters
- **X2B**  Doubles
- **X3B**  Triples
- **HR**  Homeruns by batters
- **BB**  Walks by batters
- **SO**  Strikeouts by batters
- **SB**  Stolen bases
- **CS**  Caught stealing
- **HBP**  Batters hit by pitch
- **SF**  Sacrifice flies
- **RA**  Opponents runs scored
- **ER**  Earned runs allowed
- **ERA**  Earned run average
- **CG**  Complete games
- **SHO**  Shutouts
- **SV**  Saves
- **IPouts**  Outs Pitched (innings pitched x 3)
- **HA**  Hits allowed
- **HRA**  Homeruns allowed
Teams

BBA  Walks allowed
SOA  Strikeouts by pitchers
E  Errors
DP  Double Plays
FP  Fielding percentage
name  Team’s full name
park  Name of team’s home ballpark
attendance  Home attendance total
BPF  Three-year park factor for batters
PPF  Three-year park factor for pitchers
teamIDBR  Team ID used by Baseball Reference website
teamIDlahman45  Team ID used in Lahman database version 4.5
teamIDretro  Team ID used by Retrosheet

Details

Variables X2B and X3B are named 2B and 3B in the original database

Source


Examples

data(Teams)

# subset on a few variables
teams <- subset(Teams, lgID %in% c("AL", "NL"))
teams <- subset(teams, yearID>1900)
# drop some variables
teams <- subset(teams, select=-c(Ghome, divID, DivWin:WSWin, name, park, teamIDBR:teamIDretro))
teams <- subset(teams, select=-c(HBP, CS, BPF, PPF))

# subset to remove infrequent teams
tcount <- table(Teams$teamID)
teams <- subset(teams, teams$teamID %in% names(tcount)[tcount>15], drop=TRUE)
teams$teamID <- factor(teams$teamID, levels=names(tcount)[tcount>15])

# relevel lgID
teams$lgID <- factor(teams$lgID, levels= c("AL", "NL"))
# create new variables

teams <- within(teams, {
  WinPct = W / G  # # Winning percentage
})
library(lattice)

xyplot(attendance/1000 ~ WinPct|yearID, groups=lgID, data=subset(teams, yearID>1980),
       type=c("p", "r"), col=c("red","blue"))

## Not run:
if(require(googlevis)) {
  motion1 <- gvisMotionChart(teams, idvar='teamID', timevar='yearID',
                               chartId="gvisTeams", options=list(width=700, height=600))
  plot(motion1)
  #print(motion1, file="gvisTeams.html")

  #### merge with ave salary, for those years where salary is available
  avesal <- aggregate(salary ~ yearID + teamID, data=Salaries, FUN=mean)
  
  # salary data just starts after 1980
  teamsSal <- subset(teams, yearID>=1980)

  # add salary to team data
  teamsSal <- merge(teamsSal, avesal[,c("yearID", "teamID", "salary")],
                    by=c("yearID", "teamID"), all.x=TRUE)

  motion2 <- gvisMotionChart(teamsSal, idvar='teamID', timevar='yearID',
                             xvar="attendance", yvar="salary", sizevar="WinPct",
                             chartId="gvisTeamsSal", options=list(width=700, height=600))
  plot(motion2)
  #print(motion2, file="gvisTeamsSal.html")
}

## End(Not run)

---

**TeamsFranchises**

*TeamFranchises table*

**Description**

Information about team franchises

**Usage**

data(TeamsFranchises)

**Format**

A data frame with 120 observations on the following 4 variables.

franchID Franchise ID; a factor
franchName Franchise name


**TeamsHalf**

<table>
<thead>
<tr>
<th>active</th>
<th>Whether team is currently active (Y or N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAassoc</td>
<td>ID of National Association team franchise played as</td>
</tr>
</tbody>
</table>

**Source**


---

**TeamsHalf table**

### Description

Split season data for teams

### Usage

data(TeamsHalf)

### Format

A data frame with 52 observations on the following 10 variables.

- **yearID** Year
- **lgID** League; a factor with levels AL NL
- **teamID** Team; a factor
- **Half** First or second half of season
- **divID** Division
- **DivWin** Won Division (Y or N)
- **Rank** Team’s position in standings for the half
- **G** Games played
- **W** Wins
- **L** Losses

### Source

Index

*Topic datasets
  AllstarFull, 5
  Appearances, 7
  AwardsManagers, 9
  AwardsPlayers, 10
  AwardsShareManagers, 11
  AwardsSharePlayers, 12
  Batting, 13
  battingLabels, 16
  BattingPost, 17
  Fielding, 20
  FieldingOF, 22
  FieldingPost, 22
  HallOfFame, 23
  LahmanData, 27
  Managers, 28
  ManagersHalf, 31
  Master, 32
  Pitching, 34
  PitchingPost, 36
  Salaries, 39
  Schools, 40
  SchoolsPlayers, 42
  SeriesPost, 43
  Teams, 43
  TeamsFranchises, 46
  TeamHalf, 47
*Topic manip
  battingStats, 19
  Label, 26
  playerInfo, 38
  AllstarFull, 5, 5
  Appearances, 5, 7
  AwardsManagers, 4, 9
  AwardsPlayers, 4, 10
  AwardsShareManagers, 4, 11
  AwardsSharePlayers, 4, 12
  Baseball, 14
  baseball, 14
  Batting, 4, 13, 16, 19, 20, 32
  battingLabels, 5, 16, 26
  BattingPost, 4, 17, 20
  battingStats, 14, 19
  Fielding, 4, 16, 20
  fieldingLabels, 5, 26
  fieldingLabels (battingLabels), 16
  FieldingOF, 5, 22
  FieldingPost, 4, 22
  grep, 38
  HallOfFame, 5, 23
  Label, 16, 17, 26
  Lahman (Lahman-package), 2
  Lahman-package, 2
  LahmanData, 27
  Managers, 5, 28
  ManagersHalf, 5, 31
  Master, 4, 24, 32, 38
  Pitching, 4, 16, 32, 34
  pitchingLabels, 5, 26
  pitchingLabels (battingLabels), 16
  PitchingPost, 4, 36
  playerInfo, 38
  Salaries, 5, 39
  Schools, 5, 40
  SchoolsPlayers, 5, 42
  SeriesPost, 4, 43
  teamInfo (playerInfo), 38
  Teams, 4, 38, 43
  TeamsFranchises, 4, 44, 46
  TeamHalf, 4, 47