Package ‘XLConnect’

March 1, 2015

Type Package

Title Excel Connector for R

Version 0.2-11

Date 2015-03-01

URL http://www.mirai-solutions.com,
 http://miraisolutions.wordpress.com

BugReports https://github.com/miraisolutions/xlconnect/issues

SystemRequirements java (>= 1.6)

Depends R (>= 2.10.0), XLConnectJars (== 0.2-9)

Imports methods, rJava

Suggests RUnit, lattice, ggplot2 (>= 0.9.3), zoo

Description Provides comprehensive functionality to read, write and format Excel data.

License GPL-3

Copyright See file COPYRIGHTS

LazyData yes

Author Mirai Solutions GmbH [aut],
 Martin Studer [cre],
 The Apache Software Foundation [ctb, cph] (Apache POI, Apache Commons Codec),
 Stephen Colebourne [ctb, cph] (Joda-Time Java library)

Maintainer Martin Studer <martin.studer@mirai-solutions.com>

NeedsCompilation no

Repository CRAN

Date/Publication 2015-03-01 17:58:12
R topics documented:

XLConnect-package ... 4
addImage-methods .. 5
appendNamedRegion-methods ... 6
appendWorksheet-methods ... 8
aref 9
aref2idx 10
cellstyle-class ... 10
clearNamedRegion-methods .. 12
clearRange-methods ... 13
clearRangeFromReference-methods 15
clearSheet-methods .. 16
cloneSheet-methods ... 17
col2idx 18
createCellStyle-methods .. 18
createFreezePane-methods ... 20
createName-methods .. 21
createSheet-methods ... 23
createSplitPane-methods .. 24
cref2idx 25
existsName-methods .. 26
existsSheet-methods ... 27
extraction-methods ... 28
extractSheetName .. 29
getActiveSheetIndex-methods ... 30
getActiveSheetName-methods ... 31
getBoundingClientRect-methods 31
getCellFormula-methods ... 33
getCellStyle-methods .. 34
getCellStyleForType-methods ... 35
getDefinedNames-methods ... 36
getForceFormulaRecalculation-methods 37
getLastColumn-methods ... 38
getLastRow-methods .. 39
getReferenceCoordinates-methods 40
getReferenceCoordinatesForName-methods 41
getReferenceCoordinatesForTable-methods 42
getReferenceFormula-methods ... 43
getSheetPos-methods .. 44
getSheets-methods .. 45
getTables-methods ... 45
hideSheet-methods ... 47
idx2aref 48
idx2col 49
idx2cref 50
isSheetHidden-methods .. 51
isSheetVeryHidden-methods .. 52
topics documented:

- isSheetVisible-methods ... 53
- loadWorkbook .. 54
- mergeCells-methods .. 56
- mirai ... 57
- onErrorCell-methods .. 57
- print-methods ... 58
- readNamedRegion ... 59
- readNamedRegionFromFile 63
- readTable ... 64
- readWorksheet-methods .. 66
- readWorksheetFromFile 71
- removeName-methods ... 72
- removePane-methods .. 73
- removeSheet-methods .. 74
- renameSheet-methods .. 75
- saveWorkbook-methods .. 76
- setActiveSheet-methods 78
- setAutoFilter-methods .. 79
- setBorder-methods .. 80
- setCellFormula-methods 81
- setCellStyle-methods .. 82
- setCellStyleForType-methods 84
- setColumnWidth-methods 86
- setDataFormat-methods .. 87
- setDataFormatForType-methods 88
- setFillBackgroundColor-methods 90
- setFillForegroundColor-methods 91
- setFillPattern-methods .. 92
- setForceFormulaRecalculation-methods 93
- setMissingValue-methods 94
- setRowHeight-methods ... 95
- setSheetColor-methods .. 96
- setSheetPos-methods .. 97
- setStyleAction-methods 98
- setStyleNamePrefix-methods 101
- setWrapText-methods .. 102
- show-methods .. 103
- summary-methods ... 104
- swissfranc ... 105
- unhideSheet-methods ... 105
- unmergeCells-methods .. 106
- with.workbook .. 107
- workbook-class .. 108
- writeNamedRegion-methods 110
- writeNamedRegionToFile 111
- writeWorksheet-methods 112
- writeWorksheetToFile ... 114
- XLC .. 115
Description

Provides comprehensive functionality to read, write and format Excel data.

Details

Package: XLConnect
Type: Package
Version: 0.2-11
Date: 2015-03-01
URL: http://www.mirai-solutions.com
http://miraisolutions.wordpress.com
SystemRequirements: java (>= 1.6)
Depends: R (>= 2.10.0), XLConnectJars (== 0.2-9)
Imports: methods, rJava, utils
Suggests: RUnit, lattice, ggplot2 (>= 0.9.3), zoo
License: GPL-3
Copyright: See file COPYRIGHTS
LazyData: yes

For an overview over the package please refer to the available demos:
demo(package = "XLConnect")

Author(s)

Mirai Solutions GmbH, <xlconnect@mirai-solutions.com>

References

Mirai Solutions GmbH: http://www.mirai-solutions.com
Mirai Solutions on GitHub: https://github.com/miraisolutions
Mirai Solutions Blog: http://miraisolutions.wordpress.com
Apache POI: http://poi.apache.org
Examples

```r
c # Load workbook; create if not existing
wb <- loadWorkbook("XLCtnt.xls", create = TRUE)

c # Create a worksheet
createSheet(wb, name = "mtcars")

c # Create a name reference
createName(wb, name = "mtcars", formula = "mtcars!$C$5")

c # Write built-in data.frame 'mtcars' to the specified named region
writeNamedRegion(wb, mtcars, name = "mtcars")

c # Save workbook
saveWorkbook(wb)
```

Description

Adds an image to a worksheet using a named region.

Usage

```r
## S4 method for signature 'workbook'
addImage(object, filename, name, originalSize)
```

Arguments

- `object`: The *workbook* to use
- `filename`: Name of the image file. Supported are images of the following formats: JPG/JPEG, PNG, WMF, EMF, BMP, PICT.
- `name`: Name of the named region that the image is set to
- `originalSize`: If `originalSize = TRUE`, the image is inserted in the top left corner of the named region and not scaled. Otherwise, the image is scaled to fit the named region. The default value for `originalSize` is `FALSE`.

Note

There is an known issue in Apache POI with adding images to xls workbooks. The result of adding images to workbooks that already contain shapes or images may be that previous images are removed or that existing images are replaced with newly added ones. It is therefore advised that you use the `addImage` functionality only with workbooks that have no existing shapes or images. Note that this only holds for xls workbooks (Excel 97-2003) and not for xlsx (Excel 2007+). There should be no issues with xlsx workbooks.
Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook, createName

Examples

```r
## Write an R plot to a specified named region
# This example makes use of the 'Tonga Trench Earthquakes' example

# Load workbook (create if not existing)
wb <- loadWorkbook("earthquake.xlsx", create = TRUE)

# Create a sheet named 'earthquake'
createSheet(wb, name = "earthquake")

# Create a named region called 'earthquake' referring to the sheet
called 'earthquake'
createName(wb, name = "earthquake", formula = "earthquake!$B$2")

# Create R plot to a png device
require(lattice)
png(filename = "earthquake.png", width = 800, height = 600)
dev.new(ask = FALSE)

Depth <- equal.count(quakes$depth, number=8, overlap=.1)
xyplot(lat ~ long | Depth, data = quakes)
update(trellis.last.object(),
      strip = strip.custom(strip.names = TRUE, strip.levels = TRUE),
      par.strip.text = list(cex = 0.75),
      aspect = "iso")

dev.off()

# Write image to the named region created above using the image's
# original size; i.e. the image's top left corner will match the
# specified cell's top left corner
addImage(wb, filename = "earthquake.png", name = "earthquake",
         originalSize = TRUE)

# Save workbook (this actually writes the file to disk)
saveWorkBook(wb)
```

Appending data to a named region
Description

Appends data to an existing named region.

Usage

```r
## S4 method for signature 'workbook,ANY'
appendNamedRegion(object, data, name, header, rownames)
```

Arguments

- **object**: The workbook to use
- **data**: Data to write
- **name**: Name of the (existing) named region to which to append the data
- **header**: Specifies if the column names should be written. The default is FALSE.
- **rownames**: Name (character) of column to use for the row names of the provided data object. If specified, the row names of the data object (data.frame) will be included as an additional column with the specified name. If `rownames` = NULL (default), no row names will be included.

Details

Appends data to the existing named region specified by `name`. The data is appended at the bottom of the named region. See `writeNamedRegion` for further information on writing named regions.

Note

Named regions are automatically redefined to the area occupied by the previous and the newly appended data. This guarantees that the complete set of data can be re-read using `readNamedRegion`. Note however, that no checks are performed to see whether the appended data has the same shape/structure as the previous data.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

- `workbook`, `writeNamedRegion`, `readNamedRegion`, `writeWorksheet`, `appendWorksheet`, `readWorksheet`

Examples

```r
# mtcars.xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Append mtcars data set to named region named 'mtcars'
appendNamedRegion(wb, mtcars, name = "mtcars")
```
appendWorksheet-methods

Appending data to worksheets

Description

Appends data to worksheets of a `workbook`.

Usage

```r
## S4 method for signature 'workbook,ANY,character'
appendWorksheet(object, data, sheet, header, rownames)
```

Arguments

- **object**: The `workbook` to write to
- **data**: Data to append
- **sheet**: The name or index of the sheet to append the data to
- **header**: Specifies if the column names should be written. The default is `TRUE`.
- **rownames**: Name (`character`) of column to use for the row names of the provided data object. If specified, the row names of the data object (`data.frame`) will be included as an additional column with the specified name. If `rownames = NULL` (default), no row names will be included.

Details

Appends data to the worksheet specified by `sheet`. Data will be appended at the bottom and left most column containing some data. If more complex "appending schemes" are required you may make direct use of `writeWorksheet`.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

- `workbook`, `writeWorksheet`, `readWorksheet`, `writeNamedRegion`, `appendNamedRegion`, `readNamedRegion`
Examples

mtcars xlsx file from demofiles subfolder of package XLConnect
demoExcelFile <- system.file("demofiles/mtcars.xlsx", package = "XLConnect")

Load workbook
wb <- loadWorkbook(demoExcelFile)

Append mtcars data set to worksheet named 'mtcars'
appendWorksheet(wb, mtcars, sheet = "mtcars")

aref Constructing Excel area references

Description

Constructs an Excel area reference

Usage

aref(topLeft, dimension)

Arguments

topLeft Top left corner. Either a character specifying a cell reference in the form "A1" or a numeric vector of length two specifying the corresponding coordinates.
dimension Dimensions (numeric) of a 2-dimensional object (mostly a data.frame or a matrix)

Value

Returns the area reference (character) for the specified top left cell and dimension.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

aref2idx, idx2aref, idx2cref, col2idx, idx2col

Examples

aref("A1", dim(mtcars))
aref(c(1, 1), dim(mtcars))
aref2idx

Converting Excel cell references to row and column based cell references

Description

Converts Excel cell references to row and column based cell references

Usage

```r
aref2idx(x)
```

Arguments

- `x` Character vector of Excel cell references (e.g. "A1:B6", "B6:C17", ...)

Value

Returns a numeric matrix with four columns and as many rows as cell references that have been provided. The first two columns represent the coordinates of the top left corner (row, column) and the third and fourth columns represent the bottom right corner of the referenced area.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`idx2aref`, `aref`, `cref2idx`, `idx2cref`, `col2idx`, `idx2col`

Examples

```r
aref2idx(c("A1:B6", "B6:C17"))
```

cellstyle-class

Class “cellstyle”

Description

This class represents a cell style in a Microsoft Excel workbook. S4 objects of this class and corresponding methods are used to manipulate cell styles. This includes setting data formats, borders, background- and foreground-colors, etc.

Objects from the Class

Cell styles are created by calling the `createCellStyle` method on a `workbook` object.
Slots

job: Object of class jobRef (see package rJava) which represents a Java object reference that is used in the back-end to manipulate the underlying Excel cell style instance.

Note

XLConnect generally makes use of custom (named) cell styles. This allows users to more easily manage cell styles via Excel’s cell style menu. For example, assuming you were using a specific custom cell style for your data table headers, you can change the header styling with a few clicks in Excel’s cell style menu across all tables.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

References

Apply, create, or remove a cell style:

See Also

workbook, createCellStyle, setStyleAction, setCellStyle

Examples

Load workbook (create if not existing)
wb <- loadWorkbook("cellstyles.xlsx", create = TRUE)

We don't set a specific style action in this demo, so the # default 'XLConnect' will be used (XLC$"STYLE_ACTION.XLCONNECT")

Create a sheet named 'mtcars'
createSheet(wb, name = "mtcars")

Create a named region called 'mtcars' referring to the sheet # called 'mtcars'
createName(wb, name = "mtcars", formula = "mtcars!C4")

Write built-in data set 'mtcars' to the above defined named region. # This will use the default style action 'XLConnect'.
writeNamedRegion(wb, mtcars, name = "mtcars")

Now let's color all weight cells of cars with a weight > 3.5 in red # (mtcars$wt > 3.5)

First, create a corresponding (named) cell style
heavyCar <- createCellStyle(wb, name = "HeavyCar")

Specify the cell style to use a solid foreground color
```r
setFillPattern(heavyCar, fill = XLC$"FILL.SOLID_FOREGROUND")

# Specify the foreground color to be used
setFillForegroundColor(heavyCar, color = XLC$"COLOR.RED")

# Which cars have a weight > 3.5 ?
rowIndex <- which(mtcars$wt > 3.5)

# NOTE: The mtcars data.frame has been written offset with top
# left cell C4 - and we have also written a header row!
# So, let's take that into account appropriately. Obviously,
# the two steps could be combined directly into one ...
rowIndex <- rowIndex + 4

# The same holds for the column index
colIndex <- which(names(mtcars) == "wt") + 2

# Set the 'HeavyCar' cell style for the corresponding cells.
# Note: the row and col arguments are vectorized!
setCellStyle(wb, sheet = "mtcars", row = rowIndex, col = colIndex,
            cellstyle = heavyCar)

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)
```

clearNamedRegion-methods

Clearing named regions in a workbook

Description

Clears named regions in a workbook.

Usage

```r
## S4 method for signature 'workbook,character'
clearNamedRegion(object, name)
```

Arguments

- `object` The workbook to use
- `name` The name of the named region to clear

Details

Clearing a named region/range means to clear all the cells associated with that named region. Clearing named regions can be useful if (named) data sets in a worksheet need to be replaced, i.e. data is first read, modified in R and finally written back to the the same named region. Without clearing the named region first, (parts of) the original data may still be visible if they occupied a larger range in the worksheet.
clearRange-methods

Author(s)
Nicola Lambiase
Mirai Solutions GmbH
http://www.mirai-solutions.com

See Also
workbook, clearSheet, clearRange, clearRangeFromReference, clearSheet

Examples

```r
# mtcars xlsx file from demoFiles subfolder of
# package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx",
    package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Read named region 'mtcars'
data <- readNamedRegion(wb, name = "mtcars", header = TRUE)

# Only consider cars with a weight >= 5
data <- data[data$wt >= 5, ]

# Clear original named region
clearNamedRegion(wb, name = "mtcars")

# Write subsetted data back
# Note: this is covering a smaller area now -
# writeNamedRegion automatically redefines the named region
# to the size/area of the data
writeNamedRegion(wb, data = data, name = "mtcars",
    header = TRUE)
```

clearRange-methods Clearing cell ranges in a workbook

Description
Clears cell ranges in a workbook.

Usage

```r
## S4 method for signature 'workbook,numeric'
clearRange(object, sheet, coords)
## S4 method for signature 'workbook,character'
clearRange(object, sheet, coords)
```
clearRange-methods

Arguments

- **object**: The workbook to use
- **sheet**: The name or index of the worksheet in which to clear cell ranges
- **coords**: Numeric vector of length 4 or numeric matrix with 4 columns where the elements of the vector or rows in the matrix refer to the coordinates of the top-left and bottom-right corners of the ranges to clear. I.e. a vector or each row specifies the coordinates {top row, left column, bottom row, right column}. You may use `aref2idx` to generate such a matrix.

Details

Clearing a cell range means to clear all the cells associated with that range.

Author(s)

Nicola Lambiase
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `clearSheet`, `clearNamedRegion`, `clearRangeFromReference`, `clearSheet`

Examples

```r
# mtcars.xlsx file from demoFiles subfolder of
# package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx",
                             package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Clear range from top left corner (4,2) to (6,4)
clearRange(wb, sheet = "mtcars", coords = c(4, 2, 6, 4))

# Clear two ranges in one go ...
mat = matrix(c(5, 1, 6, 4, 5, 7, 7, 9), ncol = 4, byrow = TRUE)
clearRange(wb, sheet = "mtcars", coords = mat)

# The above is equivalent to ...
clearRange(wb, sheet = "mtcars",
           coords = aref2idx(c("A5:D6", "G5:I7")))

# This in turn is the same as ...
clearRangeFromReference(wb, reference = c("mtcars!A5:D6",
                                          "mtcars!G5:I7"))
```
clearRangeFromReference-methods

Clearing cell ranges in a workbook

Description

Clears cell ranges specified by area reference in a workbook.

Usage

```
## S4 method for signature 'workbook,character'
clearRangeFromReference(object, reference)
```

Arguments

- `object` The workbook to use
- `reference` character specifying an area reference in the form 'SheetX!A7:B19'

Details

Clearing a cell range means to clear all the cells associated with that range. This method is very similar to `clearRange`.

Author(s)

Nicola Lambiase
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook, clearSheet, clearNamedRegion, clearRange, clearSheet`

Examples

```
# mtcars.xlsx file from demoFiles subfolder of
# package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx",
                           package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Clear ranges A5:D6 and G5:I7 on sheet mtcars
clearRangeFromReference(wb, reference = c("mtcars!A5:D6",
                                       "mtcars!G5:I7"))
```
clearSheet-methods Clearing worksheets in a workbook

Description
Clears worksheets with specified names or indices in a workbook.

Usage

```r
## S4 method for signature 'workbook,numeric'
clearSheet(object, sheet)
## S4 method for signature 'workbook,character'
clearSheet(object, sheet)
```

Arguments

- `object`: The workbook to use
- `sheet`: The name or the index of the worksheet to clear

Details
Clearing a worksheet means to clear all the cells in that worksheet. Consequently, the saved workbook should be smaller in size. Clearing a worksheet can be useful if data sets in a worksheet need to be replaced, i.e. data are first read, modified in R and finally written back to the worksheet. Without clearing the worksheet first, (parts of) the original data may still be visible if they occupied a larger range of the worksheet.

Author(s)
Nicola Lambiase
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also
workbook, clearNamedRegion, clearRange, clearRangeFromReference

Examples

```r
# mtcars .xlsx file from demoFiles subfolder of
# package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx",
                          package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Clear worksheets named 'mtcars' and 'mtcars2'
clearSheet(wb, sheet = c("mtcars", "mtcars2"))
```
cloneSheet-methods Cloning/copying worksheets

Description

Clones (copies) a worksheet in a workbook.

Usage

```r
## S4 method for signature 'workbook,numeric'
cloneSheet(object, sheet, name)
## S4 method for signature 'workbook,character'
cloneSheet(object, sheet, name)
```

Arguments

- `object` The workbook to use
- `sheet` The name or index of the worksheet to clone
- `name` The name to assign to the cloned worksheet. Throws an exception if the name to assign is the name of an already existing worksheet.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

- `workbook`, `createSheet`, `removeSheet`, `renameSheet`, `getSheets`, `existsSheet`

Examples

```r
# mtcars.xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Clone the 'mtcars' worksheet and assign it the name 'mtcars cloned'
cloneSheet(wb, sheet = "mtcars", name = "mtcars cloned")
```
col2idx Converting Excel column names to indices

Description
Converts Excel column names to indices.

Usage
col2idx(x)

Arguments
x Character vector of Excel column names (e.g. "A", "AF", ...)

Value
Returns a vector of integers representing the corresponding column indices. Note that passing invalid column name references may result in an arbitrary number.

Author(s)
Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also
idx2col, cref2idx, idx2cref, idx2aref, aref2idx, aref

Examples
col2idx(c("A", "BTG"))

createCellStyle-methods
Creating custom named and anonymous cell styles

Description
Creates a custom named or anonymous cellstyle.

Usage
S4 method for signature 'workbook,character'
createCellStyle(object, name)
createCellStyle-methods

Arguments

object The workbook to use
name The name of the new cellstyle to create. Omit to create an anonymous cellstyle.

Details

Creates a named cellstyle with the specified name. Named cell styles may be used in conjunction with the name prefix style action (see setStyleAction) or may also be used directly with the method setCellStyle. Named cell styles can easily be changed from within Excel using the cell styles menu.

If name is missing, an anonymous cell style is created. Anonymous cell styles can be used in conjunction with the setCellStyle method.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook, cellstyle, setStyleAction, setNamePrefix, setCellStyle, setDataFormat, setBorder, setFillBackgroundColor, setFillForegroundColor, setFillPattern, setWrapText

Examples

Load workbook (create if not existing)
wb <- loadWorkbook("createCellstyles.xlsx", create = TRUE)

We don't set a specific style action in this demo, so the # default 'XLConnect' will be used (XLC$"STYLE_ACTION.XLCONNECT")

Create a sheet named 'mtcars'
createSheet(wb, name = "mtcars")

Create a named region called 'mtcars' referring to the sheet # called 'mtcars'
createName(wb, name = "mtcars", formula = "mtcars!C4")

Write built-in data set 'mtcars' to the above defined named region. # This will use the default style action 'XLConnect'.
writeNamedRegion(wb, mtcars, name = "mtcars")

Now let's color all weight cells of cars with a weight > 3.5 in red # (mtcars$wt > 3.5)

First, create a corresponding (named) cell style
heavyCar <- createCellStyle(wb, name = "HeavyCar")

Specify the cell style to use a solid foreground color
setFillPattern(heavyCar, fill = XLC$"FILL.SOLID_FOREGROUND")

Specify the foreground color to be used
setFillForegroundColor(heavyCar, color = XLC$"COLOR.RED")

Which cars have a weight > 3.5 ?
rowIndex <- which(mtcars$wt > 3.5)

NOTE: The mtcars data.frame has been written offset with
top left cell C4 - and we have also written a header row!
So, let's take that into account appropriately. Obviously,
the two steps could be combined directly into one ...
rowIndex <- rowIndex + 4

The same holds for the column index
colIndex <- which(names(mtcars) == "wt") + 2

Set the 'HeavyCar' cell style for the corresponding cells.
Note: the row and col arguments are vectorized!
setCellStyle(wb, sheet = "mtcars", row = rowIndex, col = colIndex,
 cellstyle = heavyCar)

Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

createFreezePane-methods

Creating a freeze pane on a worksheet

Description

Creates a freeze pane on a specified worksheet.

Usage

S4 method for signature 'workbook,character'
createFreezePane(object, sheet, colSplit, rowSplit, leftColumn, topRow)
S4 method for signature 'workbook,numeric'
createFreezePane(object, sheet, colSplit, rowSplit, leftColumn, topRow)

Arguments

- object: The workbook to use
- sheet: The name or index of the sheet on which to create a freeze pane
- colSplit: Horizontal position of freeze (as column index or name)
- rowSplit: Vertical position of freeze (as number of rows)
- leftColumn: Left column (as column index or name) visible in right pane. If not specified, the default is leftColumn=colSplit
- topRow: Top row (as index) visible in bottom pane. If not specified, the default is topRow=rowSplit
Note

To keep an area of a worksheet visible while you scroll to another area of the worksheet, you can lock specific rows or columns in one area by freezing or splitting panes.

When you freeze panes, you keep specific rows or columns visible when you scroll in the worksheet. For example, you might want to keep row and column labels visible as you scroll.

When you split panes, you create separate worksheet areas that you can scroll within, while rows or columns in the non-scrolled area remain visible.

Author(s)

Nicola Lambiase
Mirai Solutions GmbH http://www.mirai-solutions.com

References

See Also

workbook createSplitPane removePane

Examples

```r
# Load workbook (create if not existing)
wb <- loadWorkbook("freezePaneTest.xlsx", create = TRUE)

# Create a worksheet named 'Sheet1'
createSheet(wb, name = "Sheet1")

# Create a freeze pane on Sheet1, using as reference position the 5th column and the 5th row,
# showing the 10th column as the leftmost visible one in the right pane
# and the 10th row as the top visible one in the bottom pane.
createFreezePane(wb, "Sheet1", 5, 5, 10, 10)

# Save workbook (this actually writes the file to disk)
saveWorkbook(wb)
```

Description

Creates a name for a specified formula in a workbook.

Usage

```r
## S4 method for signature 'workbook'
createName(object, name, formula, overwrite)
```
Arguments

- **object**: The workbook to use
- **name**: The name’s name to create
- **formula**: Excel formula specifying the name
- **overwrite**: If a name with the same name already exists and overwrite = TRUE, then this name is removed first before the new one is created. If a name already exists and overwrite = FALSE, then an exception is thrown. The default value for overwrite is FALSE.

Details

Creates a name named name for the specified formula.

The formula should be specified as you would type it in Excel. Make sure that the worksheets, functions, ... exist that you are referring to in the formula.

The name, formula and overwrite arguments are vectorized such that multiple names can be created in one method call.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

References

- What are named regions/ranges?
- How to create named regions/ranges?
 http://www.youtube.com/watch?v=iaE9a0uRtpM

See Also

- workbook, removename, existsname, getdefinednames,
- readnamedregion, writenamedregion

Examples

```r
# Load workbook (create if not existing)
w <- loadWorkbook("createName.xlsx", create = TRUE)

# Create a worksheet named 'mtcars'
createSheet(wb, name = "mtcars")

# Create a named region called 'mtcars' on the sheet called 'mtcars'
createName(wb, name = "mtcars", formula = "mtcars!$A$1")

# Write built-in data set 'mtcars' to the above defined named region
writenamedregion(wb, mtcars, name = "mtcars")

# Save workbook
```
createSheet-methods

saveWorkbook(wb)

createSheet-methods Creating worksheets in a workbook

Description

Creates worksheets with specified names in a workbook.

Usage

S4 method for signature 'workbook'
createSheet(object, name)

Arguments

object The workbook to use
name The name of the sheet to create

Details

Creates a worksheet with the specified name if it does not already exist. Note that the naming of worksheets needs to be in line with Excel’s convention, otherwise an exception will be thrown. For example, worksheet names cannot be longer than 31 characters. Also note that the name argument is vectorized, so multiple worksheets can be created in one method call.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook, removeSheet, renameSheet, existsSheet, getSheets, cloneSheet

Examples

Load workbook (create if not existing)
w <- loadWorkbook("createSheet.xlsx", create = TRUE)

Create a worksheet called 'CO2'
createSheet(wb, name = "CO2")

Save workbook (this actually writes the file to disk)
saveWorkbook(wb)
createSplitPane-methods

Creating a split pane on a worksheet

Description

Creates a split pane on a specified worksheet.

Usage

```r
## S4 method for signature 'workbook,character'
createSplitPane(object, sheet, xSplitPos, ySplitPos, leftColumn, topRow)
## S4 method for signature 'workbook,numeric'
createSplitPane(object, sheet, xSplitPos, ySplitPos, leftColumn, topRow)
```

Arguments

- `object` : The `workbook` to use
- `sheet` : The name or index of the sheet on which to create a split pane
- `xSplitPos` : Horizontal position of split (in 1/20th of a point)
- `ySplitPos` : Vertical position of split (in 1/20th of a point)
- `leftColumn` : Left column (as index or column name) visible in right pane
- `topRow` : Top row visible in bottom pane

Note

To keep an area of a worksheet visible while you scroll to another area of the worksheet, you can lock specific rows or columns in one area by freezing or splitting panes.

When you freeze panes, you keep specific rows or columns visible when you scroll in the worksheet. For example, you might want to keep row and column labels visible as you scroll.

When you split panes, you create separate worksheet areas that you can scroll within, while rows or columns in the non-scrolled area remain visible.

Author(s)

Nicola Lambiase
Mirai Solutions GmbH http://www.mirai-solutions.com

References

See Also

`workbook createFreezePane removePane`
Examples

Load workbook (create if not existing)
wb <- loadWorkbook("splitPaneTest.xlsx", create = TRUE)

Create a worksheet named 'Sheet1'
createSheet(wb, name = "Sheet1")

Create a split pane on Sheet1, with coordinates (10000, 5000) expressed as 1/20th of a point,
10 (-> J) as left column visible in right pane and 10 as top row visible in bottom pane
createSplitPane(wb, "Sheet1", 10000, 5000, 10, 10)

Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

cref2idx Converting Excel cell references to indices

Description

Converts Excel cell references to row & column indices

Usage

cref2idx(x)

Arguments

x Character vector of Excel cell references (e.g. "A20", "B18", ...)

Value

Returns a numeric matrix with two columns and as many rows as cell references that have been
provided. The first column represents the row indices and the second column represents the column
indices.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

idx2cref, col2idx, idx2col, idx2aref, aref2idx, aref

Examples

cref2idx(c("A20", "B18"))
Checking existence of names in a workbook

Description

Checks the existence of a name in a workbook.

Usage

```r
## S4 method for signature 'workbook'
existsName(object, name)
```

Arguments

- `object` The workbook to use
- `name` The name to check for

Details

Returns TRUE if the specified name exists and FALSE otherwise. Note that the name argument is vectorized and therefore multiple names can be checked for existence in one method call.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `createName`, `removeName`, `getDefinedNames`, `readNamedRegion`, `writeNamedRegion`

Examples

```r
# mtcars xlsx file from demofiles subfolder of package XLConnect
mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(mtcarsFile)

# Check if the name 'mtcars' exists
# (should return TRUE since the name is defined as 'mtcars!$A$1:$K$33')
existsName(wb, name = "mtcars")
```
Checking for existence of worksheets in a workbook

Description

Checks the existence of a worksheet in a workbook.

Usage

```r
## S4 method for signature 'workbook'
existsSheet(object, name)
```

Arguments

- `object`: The workbook to use
- `name`: The sheet name to check for

Details

Checks if the specified worksheet exists. Returns TRUE if it exists, otherwise FALSE. The name argument is vectorized which allows to check for existence of multiple worksheets with one call.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `createSheet`, `removeSheet`, `renameSheet`, `getSheets`, `cloneSheet`

Examples

```r
# mtcars.xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Check for existence of a worksheet called 'mtcars'
existsSheet(wb, "mtcars")
```
Workbook data extraction & replacement operators

Description

Operators that allow to extract/replace data from/on a workbook.

Arguments

- **x**
 The workbook object to use

- **i**
 Name of worksheet ([, [<-]) or name of Excel name ([[, [<-]) to extract or replace

- **j**
 Only used with [<-]: Optional formula to define the Excel name if it does not yet exist on the workbook.

- **drop**
 Not used

- **value**
 Data object used for replacement

- ...
 Arguments passed to the corresponding underlying function to read/write the data

Details

The workbook extraction operators are basically syntactic sugar for the common methods `readWorksheet`, `writeWorksheet`, `readNamedRegion`, `writeNamedRegion`.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `readWorksheet`, `writeWorksheet`, `readNamedRegion`, `writeNamedRegion`

Examples

```r
# Load workbook (create if not existing)
wb <- loadWorkbook("extraction.xlsx", create = TRUE)

# Write mtcars data set on a worksheet named 'mtcars1'.
# Note: The 'mtcars1' sheet will be created automatically if it does not exist yet. Also, default values for other writeWorksheet arguments # hold, i.e. the data set is written starting at the top left corner.
wb["mtcars1"] <- mtcars

# Write mtcars data set on a worksheet named 'mtcars2'.
# Again, the 'mtcars2' worksheet is created automatically.
# Additionally specify arguments passed to the underlying method
```
writeWorksheet.
wb["mtcars2", startRow = 6, startCol = 11, header = FALSE] = mtcars

Read worksheets 'mtcars1' and 'mtcars2'.
Note: The default arguments hold for the underlying method
readWorksheet.
wb["mtcars1"]
wb["mtcars2"]

Write mtcars data set to a named region named 'mtcars3'. Since
it doesn't exist yet we also need to specify the formula to
define it. Also note that the sheet 'mtcars3' referenced in the
formula does not yet exist - it will be created automatically!
Moreover, default values for other writeNamedRegion arguments hold.
wb["mtcars3", "mtcars3!B7"] = mtcars

Redefine named region 'mtcars3'. Note that no formula specification
is required since named region is already defined (see above example).
wb["mtcars3"] = mtcars

Write mtcars data set to a named region 'mtcars4'. Since the named
region does not yet exist a formula specification is required. Also,
additional arguments are specified that are passed to the underlying
method writeNamedRegion.
wb["mtcars4", "mtcars4!D8", rownames = "Car"] = mtcars

Read the named regions 'mtcars3' and 'mtcars4'.
Note: Default values hold for the underlying method readNamedRegion.
wb["mtcars3"]
wb["mtcars4"]

extractSheetName
Extracting the sheet name from a formula

Description

Extracts the sheet name from a formula of the form `<SHEET_NAME>!<CELL_ADDRESS>`

Usage

`extractSheetName(formula)`

Arguments

- `formula`
 Formula string of the form `<SHEET_NAME>!<CELL_ADDRESS>`. Note that the validity of the formula won’t be checked.
getActiveSheetIndex-methods

Value

Returns the name of the sheet referenced in the formula. For quoted sheet names (required if names contain e.g. whitespaces or exclamation marks (!)) in formulas the function returns the unquoted name.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

Examples

extractSheetName(c("MySheet!A1", "'My Sheet'!A1", "'My!Sheet'!A1")

getActiveSheetIndex-methods

Querying the active worksheet index

Description

Queries the index of the active worksheet in a workbook.

Usage

S4 method for signature 'workbook'
g(getStringSheetIndex(object)

Arguments

object The workbook to use

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook,getStringSheetName

Examples

mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

Load workbook
wb <- loadWorkbook(demoExcelFile)

Query the active sheet index
activeSheet <- getActiveSheetIndex(wb)
getActiveSheetName-methods

Querying the active worksheet name

Description
Queries the name of the active worksheet in a **workbook**.

Usage
```r
## S4 method for signature 'workbook'
getActiveSheetName(object)
```

Arguments
- `object`: The **workbook** to use

Author(s)
- Martin Studer

See Also
- **workbook**, **getActiveSheetIndex**

Examples
```r
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query the active sheet name
activeSheet <- getActiveSheetName(wb)
```

getBoundingBox-methods

Querying the coordinates of a worksheet bounding box

Description
This function queries the coordinates of a bounding box in an Excel worksheet. A bounding box is the rectangular region of minimum size containing all the non-empty cells in a sheet.
Usage

```r
## S4 method for signature 'workbook,character'
getBoundingBox(object, sheet, startRow, startCol, endRow, endCol, autofitRow, autofitCol)
## S4 method for signature 'workbook,numeric'
getBoundingBox(object, sheet, startRow, startCol, endRow, endCol, autofitRow, autofitCol)
```

Arguments

- **object**
 - The *workbook* to use

- **sheet**
 - The name or index of the sheet from which to get the bounding box

- **startRow**
 - Start reference row for the bounding box. Defaults to `0` meaning that the start row is determined automatically.

- **startCol**
 - Start reference column for the bounding box. Defaults to `0` meaning that the start column is determined automatically.

- **endRow**
 - End reference row for the bounding box. Defaults to `0` meaning that the end row is determined automatically.

- **endCol**
 - End reference column for the bounding box. Defaults to `0` meaning that the end column is determined automatically.

- **autofitRow**
 - Logical specifying if leading and trailing empty rows should be skipped. Defaults to `TRUE`.

- **autofitCol**
 - Logical specifying if leading and trailing empty columns should be skipped. Defaults to `TRUE`.

Details

The result is a matrix containing the following coordinates:
- [1,] top left row
- [2,] top left column
- [3,] bottom right row
- [4,] bottom right column

In case more than one sheet is selected, the result matrix will contain a column for each sheet.

The bounding box resolution algorithm works as follows:
If `startRow <= 0` then the first available row in the sheet is assumed. If `endRow <= 0` then the last available row in the sheet is assumed. If `startCol <= 0` then the minimum column between `startRow` and `endRow` is assumed. If `endCol <= 0` then the maximum column between `startRow` and `endRow` is assumed. The arguments `autofitRow` and `autofitCol` (both defaulting to `TRUE`) can be used to skip leading and trailing empty rows even in case `startRow`, `endRow`, `startCol`, and `endCol` are specified to values > `0`. This can be useful if data is expected within certain given boundaries but the exact location is not available.

Author(s)

Nicola Lambiase
Mirai Solutions GmbH http://www.mirai-solutions.com
getCellFormula-methods

See Also

workbook

Examples

multiregion xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/multiregion.xlsx", package = "XLConnect")

Load workbook
wb <- loadWorkbook(demoExcelFile)

Query bounding box for the second sheet
print(getBoundingBox(wb, sheet="SecondSheet"))

Query bounding box for the first sheet, selecting the columns from 5 to 8
print(getBoundingBox(wb, sheet="FirstSheet", startCol=5, endCol=8))

cellFormula-methods

Retrieving formula definitions from cells

Description

Retrieves a cell formula from a workbook.

Usage

```r
## S4 method for signature 'workbook,character'
ggetCellFormula(object, sheet, row, col)
## S4 method for signature 'workbook,numeric'
ggetCellFormula(object, sheet, row, col)
```

Arguments

- `object`: The workbook to use
- `sheet`: The name or index of the worksheet containing the cell
- `row`: The one-based row index of the cell to query
- `col`: The one-based column index of the cell to query

Details

Retrieves the formula of the specified cell as a character, without the initial = character displayed in Excel. Raises an error if the specified cell is not a formula cell.

Author(s)

Thomas Themel
Mirai Solutions GmbH http://www.mirai-solutions.com
getCellStyle-methods

See Also

workbook, setCellFormula

Examples

Load workbook (create if not existing)
wb <- loadWorkbook("cellFormula.xlsx", create = TRUE)

createSheet(wb, "Formula")

Assign a formula to A1
setCellFormula(wb, "Formula", 1, 1, "SUM(B1:B29")")

Returns the formula for Sheet1!A1
getCellFormula(wb, "Formula", 1, 1)
The same with a numeric sheet index
getCellFormula(wb, 1, 1, 1)

Description

Retrieves a named cell style from a workbook.

Usage

S4 method for signature 'workbook'
getCellStyle(object, name)

Arguments

object The workbook to use
name The name of the cellstyle to retrieve

Details

Retrieves the cellstyle with the specified name.

Author(s)

Thomas Themel
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook, cellstyle, setStyleAction, setStyleNamePrefix, setCellStyle, setDataFormat,
setBorder, setFillBackgroundColor, setFillForegroundColor, setFillPattern, setWrapText
getCellStyleForType-methods

Examples

Load workbook (create if not existing)
wb <- loadWorkbook("getCellstyles.xlsx", create = TRUE)

You wouldn't usually ignore the return value here...
createCellStyle(wb, 'Header')

... but if you did it doesn't hurt.
sc <- getCellStyle(wb, 'Header')

Specify the cell style to use a solid foreground color
setFillPattern(cs, fill = XLC$"FILL.SOLID_FOREGROUND")

Specify the foreground color to be used
setFillForegroundColor(cs, color = XLC$"COLOR.RED")

getDescription

Querying the cell style per data type for the DATATYPE style action

Description

Queries the cell style for a specific data type as used by the DATATYPE style action.

Usage

S4 method for signature 'workbook'
ggetCellStyleForType(object, type)

Arguments

- **object** The workbook to use
- **type** The data type for which to get the cellstyle.

Details

Based on the (cell) data type the DATATYPE style action (see setStyleAction) sets the cellstyle for the corresponding cells. The data type is normally specified via a corresponding data type constant from the XLC object.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook, setCellStyleForType, setStyleAction
getDefinedNames-methods

Retrieving defined names in a workbook

Description

Retrieves the defined names in a workbook.

Usage

S4 method for signature 'workbook'
getDefinedNames(object, validOnly)

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>The workbook to use</td>
</tr>
<tr>
<td>validOnly</td>
<td>If validOnly = TRUE only names with valid references are returned. Valid references are ones not starting with #REF! or #NULL! - which could result e.g. due to a missing sheet reference. The default value for validOnly is TRUE.</td>
</tr>
</tbody>
</table>
Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `createName`, `removeName`, `existsName`, `readNamedRegion`, `writeNamedRegion`

Examples

```r
# mtcars xlsx file from demoFiles subfolder of package XLConnect
mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(mtcarsFile)

# Retrieve defined names with valid references
getDefinedNames(wb)
```

getForceFormulaRecalculation-methods
Querying the coordinates of the range reference by an Excel name

Description

Queries the "force formula recalculation" flag on an Excel worksheet.

Usage

```r
## S4 method for signature 'workbook,character'
getForceFormulaRecalculation(object, sheet)
## S4 method for signature 'workbook,numeric'
getForceFormulaRecalculation(object, sheet)
```

Arguments

- `object`
 The `workbook` to use
- `sheet`
 The name or index of the sheet to query. This argument is vectorized such that multiple sheets can be queried with one method call. If `sheet = "#"`, the flag is queried for all sheets in the `workbook` (in the order as returned by `getSheets`).

Author(s)

Thomas Themel
Mirai Solutions GmbH http://www.mirai-solutions.com
getLastColumn-methods

Querying the last (non-empty) column on a worksheet

Description

Queries the last (non-empty) column on a worksheet.

Usage

```r
## S4 method for signature 'workbook,character'
getLastColumn(object, sheet)
## S4 method for signature 'workbook,numeric'
getLastColumn(object, sheet)
```

Arguments

- `object` The *workbook* to use
- `sheet` The name or index of the sheet of which to query the last column

Details

Returns the (1-based) numeric index of the last non-empty column in the specified worksheet.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

- `workbook`
Examples

```r
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query the last row of the 'mtcars' worksheet
g getLastColumn(wb, "mtcars")

# Query the last row of the 'mtcars2' worksheet
g getLastColumn(wb, "mtcars2")

# Query the last row of the 'mtcars3' worksheet
g getLastColumn(wb, "mtcars3")
```

getLastRow-methods

Querying the last (non-empty) row on a worksheet

Description
Queries the last (non-empty) row on a worksheet.

Usage

```r
## S4 method for signature 'workbook,character'
g getLastRow(object, sheet)
## S4 method for signature 'workbook,numeric'
g getLastRow(object, sheet)
```

Arguments

- `object` The workbook to use
- `sheet` The name or index of the sheet of which to query the last row

Details
Returns the numeric index of the last non-empty row in the specified worksheet.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

-workbook
Examples

mtcars.xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

Load workbook
wb <- loadWorkbook(demoExcelFile)

Query the last row of the 'mtcars' worksheet
getRow(wb, "mtcars")

Query the last row of the 'mtcars2' worksheet
getRow(wb, "mtcars2")

Query the last row of the 'mtcars3' worksheet
getRow(wb, "mtcars3")

getReferenceCoordinates-methods

Querying the coordinates of the range reference by an Excel name

Description

(DEPRECATED) Queries the coordinates of an Excel name in a workbook.

Usage

S4 method for signature 'workbook'
getReferenceCoordinates(object, name)

Arguments

object

The workbook to use

name

The name to query. This argument is vectorized such that multiple names can be queried with one method call.

Note

This function is deprecated. Use getReferenceCoordinatesForName instead.

Author(s)

Thomas Themel
Mirai Solutions GmbH [http://www.mirai-solutions.com]

See Also

workbook, createName, existsName, rename, getReferenceFormula
Examples

```r
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query reference coordinate for name 'mtcars'
print(getReferenceCoordinatesForName(wb, name = "mtcars"))
```

getDescriptionCoordinatesForName-methods

Querying the coordinates of the range reference by an Excel name

Description

Queries the coordinates of an Excel name in a **workbook**.

Usage

```r
## S4 method for signature 'workbook'
getReferenceCoordinatesForName(object, name)
```

Arguments

- `object` : The **workbook** to use
- `name` : The name to query. This argument is vectorized such that multiple names can be queried with one method call.

Author(s)

Thomas Themel
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `createName`, `existsName`, `removeName`, `getReferenceFormula`, `getReferenceCoordinatesForTable`

Examples

```r
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query reference coordinate for name 'mtcars'
print(getReferenceCoordinatesForName(wb, name = "mtcars"))
```
getReferenceCoordinatesForTable-methods

Querying the coordinates of the range of an Excel table

Description

Queries the coordinates of an Excel table (Office 2007+) in a workbook.

Usage

```r
## S4 method for signature 'workbook,numeric'
getReferenceCoordinatesForTable(object, sheet, table)
## S4 method for signature 'workbook,character'
getReferenceCoordinatesForTable(object, sheet, table)
```

Arguments

- `object`: The **workbook** to use
- `sheet`: The index or name of the worksheet on which to look for the specified table
- `table`: The name of the table to query. This argument is vectorized such that multiple tables can be queried with one method call.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `createName`, `existsName`, `removeName`, `getReferenceFormula`, `getReferenceCoordinatesForName`

Examples

```r
# mtcars.xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query reference coordinates for table 'MtcarsTable' on sheet 'mtcars_table'
print(getReferenceCoordinatesForTable(wb, sheet = "mtcars_table",
                                     table = "MtcarsTable"))
```
getReferenceFormula-methods

Querying reference formulas of Excel names

Description

Queries the reference formula of an Excel name in a workbook.

Usage

```r
## S4 method for signature 'workbook'
getReferenceFormula(object, name)
```

Arguments

- `object`: The workbook to use
- `name`: The name to query. This argument is vectorized such that multiple names can be queried with one method call.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `createName`, `existsName`, `removeName`

Examples

```r
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query reference formula for name 'mtcars'
print(getReferenceFormula(wb, name = "mtcars"))
```
getSheetPos-methods Querying worksheet position

Description
Queries the position of a worksheet in a workbook.

Usage
```r
## S4 method for signature 'workbook,character'
getSheetPos(object, sheet)
```

Arguments
- `object` The workbook to use
- `sheet` The name of the worksheet (character) to query. This argument is vectorized such that multiple worksheets can be queried with one method call.

Value
Returns the position index of the corresponding worksheet. Note that querying a non-existing worksheet results in a 0 index and does not throw an exception!

Author(s)
Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also
workbook, setSheetPos, getSheets

Examples
```r
# mtcars.xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query worksheet positions for the worksheets 'mtcars2', 'mtcars3',
# 'mtcars' and 'NotThere' (which actually does not exist)
print(getSheetPos(wb, sheet = c("mtcars2", "mtcars3", "mtcars", "NotThere")))
```
Description

Returns all worksheet names in a workbook.

Usage

```r
## S4 method for signature 'workbook'
getSheets(object)
```

Arguments

- `object`: The workbook to use.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `createSheet`, `removeSheet`, `renameSheet`, `getSheetPos`, `setSheetPos`

Examples

```r
# mtcars.xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Query available worksheets
sheets <- getSheets(wb)
```

getTables-methods
Querying available Excel tables in a workbook

Description

Queries the available Excel tables on the specified worksheet.
Usage

```r
## S4 method for signature 'workbook,numeric'
getTables(object, sheet, simplify)
## S4 method for signature 'workbook,character'
getTables(object, sheet, simplify)
```

Arguments

- `object` The workbook to use
- `sheet` Index (integer) or name (character) of worksheet to query
- `simplify` logical specifying if the result should be simplified (defaults to TRUE). See details.

Details

Since this is a vectorized function (multiple sheets can be specified) the result is a named list (one component per sheet) if no simplification is applied. In cases where only one sheet is queried and `simplify = TRUE` (default) the result is simplified to a vector.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook, getSheets, readTable`

Examples

```r
# mtcars.xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

tables <- getTables(wb, sheet = "mtcars_table")

tables <- getTables(wb, sheet = 4)
```
hideSheet-methods

Hiding worksheets in a workbook

Description

(Very) hides the specified worksheets in a workbook.

Usage

```r
## S4 method for signature 'workbook,character'
hideSheet(object, sheet, veryHidden)
## S4 method for signature 'workbook,numeric'
hideSheet(object, sheet, veryHidden)
```

Arguments

- `object`: The workbook to use
- `sheet`: The name or index of the sheet to hide
- `veryHidden`: If `veryHidden = TRUE`, the specified sheet is "very" hidden (see note), otherwise it is just hidden. Default is FALSE.

Details

The arguments `sheet` and `veryHidden` are vectorized such that multiple worksheets can be (very) hidden with one method call. An exception is thrown if the specified sheet does not exist.

Note

Note that hidden worksheets can be unhidden by users directly within Excel via standard functionality. Therefore Excel knows the concept of "very hidden" worksheets. These worksheets cannot be unhidden with standard Excel functionality but need programatic intervention to be made visible.

Also note that in case the specified worksheet to hide is the currently active worksheet, then `hideSheet` tries to set the active worksheet to the first non-hidden (not hidden and not very hidden) worksheet in the workbook. If there is no such worksheet, `hideSheet` will throw an exception.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `unhideSheet`, `isSheetHidden`, `isSheetVeryHidden`, `isSheetVisible`
Examples

```r
# Load workbook (create if not existing)
wb <- loadWorkbook("hiddenWorksheet.xlsx", create = TRUE)

# Write a couple of built-in data.frame's into sheets
# with corresponding name
for(obj in c("CO2", "airquality", "swiss")) {
  createSheet(wb, name = obj)
  writeWorksheet(wb, get(obj), sheet = obj)
}

# Hide sheet 'airquality';
# the sheet may be unhidden by a user from within Excel
# since veryHidden defaults to FALSE
hideSheet(wb, sheet = "airquality")

# Save workbook
saveWorkbook(wb)
```

idx2aref

Converting row and column based area references to Excel area references

Description

Converts row & column based area references to Excel area references

Usage

`idx2aref(x)`

Arguments

- `x` Numeric (integer) matrix or vector of indices. If a matrix is provided it should have four columns with the first two columns representing the top left corner (row and column indices) and the third & fourth column representing the bottom right corner. If a vector is provided it will be converted to a matrix by filling the vector into a 4-column matrix by row.

Value

Returns a character vector of corresponding Excel area references.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com
See Also

aref2idx, aref, idx2cref, cref2idx, idx2col, col2idx

Examples

idx2aref(c(1, 1, 5, 4))
idx2cref

Converting indices to Excel cell references

Description

Converts row & column indices to Excel cell references

Usage

idx2cref(x, absRow = TRUE, absCol = TRUE)

Arguments

x Numeric (integer) matrix or vector of indices. If a matrix is provided it should have two columns with the first column representing the row indices and the second column representing the column indices (i.e. each row represents a index-based cell reference). If a vector is provided it will be converted to a matrix by filling the vector into a 2-column matrix by row.

absRow Boolean determining if the row index should be considered absolute. If TRUE (default), this will result in a ´$´-prefixed row identifier.

absCol Boolean determining if the column index should be considered absolute. If TRUE (default), this will result in a ´$´-prefixed column identifier.

Value

Returns a character vector of corresponding Excel cell references.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

cref2idx, idx2col, col2idx, idx2aref, aref2idx, aref

Examples

idx2cref(c(5, 8, 14, 38))
isSheetHidden-methods

Checking if worksheets are hidden in a workbook

Description

Checks if the specified worksheets are hidden (but not very hidden) in a workbook.

Usage

```r
## S4 method for signature 'workbook,character'
isSheetHidden(object,sheet)
## S4 method for signature 'workbook,numeric'
isSheetHidden(object,sheet)
```

Arguments

- **object**: The workbook to use
- **sheet**: The name or index of the sheet to check

Details

Returns TRUE if the specified sheet is hidden (not visible but also not very hidden), otherwise FALSE. Sheet is vectorized such that multiple worksheets can be queried with one method call. An exception is thrown if the specified sheet does not exist.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

- `workbook`, `hideSheet`, `unhideSheet`, `isSheetVeryHidden`, `isSheetVisible`

Examples

```r
# Load workbook (create if not existing)
w <- loadWorkbook("isSheetHidden.xlsx", create = TRUE)

# Write a couple of built-in data.frame's into sheets
# with corresponding name
for(obj in c("C02", "airquality", "swiss")) {
  createSheet(wb, name = obj)
  writeWorksheet(wb, get(obj), sheet = obj)
}

# Hide sheet 'airquality'
hideSheet(wb, sheet = "airquality")
```
isSheetVeryHidden-methods

Checking if worksheets are very hidden in a workbook

Description

Checks if the specified worksheets are very hidden (but not just hidden) in a workbook.

Usage

```r
# S4 method for signature 'workbook,character'
isSheetVeryHidden(object, sheet)
# S4 method for signature 'workbook,numeric'
isSheetVeryHidden(object, sheet)
```

Arguments

- **object**
 - The workbook to use
- **sheet**
 - The name or index of the sheet to check

Details

Returns TRUE if the specified named sheet is very hidden (not visible but also not just hidden), otherwise FALSE. Sheet is vectorized such that multiple worksheets can be queried with one method call. An exception is thrown if the specified sheet does not exist.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

- `workbook`, `hideSheet`, `unhideSheet`, `isSheetHidden`, `isSheetVisible`
Examples

Load workbook (create if not existing)
wb <- loadWorkbook("isSheetVeryHidden.xlsx", create = TRUE)

Write a couple of built-in data.frame's into sheets
with corresponding name
for(obj in c("CO2", "airquality", "swiss")) {
 createSheet(wb, name = obj)
 writeWorksheet(wb, get(obj), sheet = obj)
}

Very hide sheet 'airquality'
hideSheet(wb, sheet = "airquality", veryHidden = TRUE)

Hide sheet 'CO2'
hideSheet(wb, sheet = "CO2", veryHidden = FALSE)

Check if sheet 'airquality' is very hidden;
this should obviously return TRUE
isSheetVeryHidden(wb, "airquality")

Check if sheet 'swiss' is very hidden;
this should obviously return FALSE
isSheetVeryHidden(wb, "swiss")

Check if sheet 'CO2' is very hidden;
this should also return FALSE - the sheet
is just hidden but not very hidden
isSheetVeryHidden(wb, "CO2")

isSheetVisible-methods

Checking if worksheets are visible in a workbook

Description

Checks if the specified worksheets are visible in a workbook.

Usage

S4 method for signature 'workbook,character'
isSheetVisible(object, sheet)
S4 method for signature 'workbook,numeric'
isSheetVisible(object, sheet)

Arguments

- **object**
The workbook to use
- **sheet**
The name or index of the sheet to check
Details

Returns TRUE if the specified named sheet is visible (not hidden and not very hidden), otherwise FALSE. Sheet is vectorized such that multiple worksheets can be queried with one method call. An exception is thrown if the specified sheet does not exist.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook, hideSheet, unhideSheet, isSheetHidden, isSheetVeryHidden

Examples

Load workbook (create if not existing)
w <- loadWorkbook("isSheetVisible.xlsx", create = TRUE)

Write a couple of built-in data.frame's into sheets
with corresponding name
for(obj in c("CO2", "airquality", "swiss")) {
 createSheet(wb, name = obj)
 writeWorksheet(wb, get(obj), sheet = obj)
}

Hide sheet 'CO2'
hideSheet(wb, sheet = "CO2", veryHidden = FALSE)

Very hide sheet 'airquality'
hideSheet(wb, sheet = "airquality", veryHidden = TRUE)

Check if sheet 'swiss' is visible;
this should obviously return TRUE
isSheetVisible(wb, "swiss")

Check if sheet 'CO2' is visible;
this should obviously return FALSE
isSheetVisible(wb, "CO2")

Check if sheet 'airquality' is visible;
this should obviously return FALSE
isSheetVisible(wb, "airquality")
Description

Loads or creates a Microsoft Excel **workbook** for further manipulation.

Usage

```
loadWorkbook(filename, create = FALSE)
```

Arguments

- **filename**

 Filename (absolute or relative) of Excel workbook to be loaded. Supported are Excel '97 (*.xls) and OOXML (Excel 2007+, *.xlsx) file formats. Paths are expanded using `path.expand`.

- **create**

 Specifies if the file should be created if it does not already exist (default is FALSE). Note that `create = TRUE` has no effect if the specified file exists, i.e. an existing file is loaded and not being recreated if `create = TRUE`.

Value

Returns a **workbook** object for further manipulation.

Note

`loadWorkbook` is basically just a shortcut form of `newHBworkbookBL filenameL createI` with some additional error checking. As such it is the preferred way of creating **workbook** instances.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

References

Wikipedia: Office Open XML

See Also

workbook, **saveWorkbook**

Examples

```
# Load existing demo Excel file 'mtcars.xlsx' from the XLConnect package
wb.mtcars <- loadWorkbook(system.file("demoFiles/mtcars.xlsx",  
  package = "XLConnect"))

# Create new workbook
wb.new <- loadWorkbook("myNewExcelFile.xlsx", create = TRUE)

# NOTE: The above statement does not write the file to disk!  
# saveWorkbook(wb.new) would need to be called in order to write/save  
# the file to disk!
```
mergeCells-methods Merging cells

Description

Merges cells in a worksheet.

Usage

```r
## S4 method for signature 'workbook,character'
mergeCells(object,sheet,reference)
```

```r
## S4 method for signature 'workbook,numeric'
mergeCells(object,sheet,reference)
```

Arguments

- **object**: The `workbook` to use
- **sheet**: The name or index of the sheet on which to merge cells
- **reference**: A cell range specification (character) in the form 'A1:B8'

Author(s)

Martin Studer
Mirai Solutions GmbHhttp://www.mirai-solutions.com

See Also

- `workbook`, `unmergeCells`, `idx2ref`

Examples

```r
# Load workbook (create if not existing)
w <- loadWorkbook("mergeCells.xlsx", create = TRUE)

# Create a worksheet called 'merge'
createSheet(wb, name = "merge")

# Merge the cells A1:B8 on the worksheet created above
mergeCells(wb, sheet = "merge", reference = "A1:B8")

# Save workbook
saveWorkbook(wb)
```
Description
Utility object to easily get to the Mirai Solutions GmbH web page. Just enter mirai in the R console.

Usage
mirai

References
Mirai Solutions GmbH http://www.mirai-solutions.com

onErrorCell-methods Behavior when error cells are detected

Description
This function defines the behavior when reading data from a worksheet and error cells are detected.

Usage
S4 method for signature 'workbook'
onErrorCell(object, behavior)

Arguments
object The workbook to use
behavior The behavior to follow when an error cell is detected. This is normally specified by a corresponding XLC error constant, i.e. either XLC$"ERROR.WARN" or XLC$"ERROR.STOP". XLC$"ERROR.WARN" means the error cell will be read as missing value (NA) and a corresponding warning will be generated (this is the default behavior). XLC$"ERROR.STOP" means that an exception will be thrown and further execution will be stopped immediately.

Author(s)
Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also
workbook, readNamedRegion, readNamedRegionFromFile, readWorksheet, readWorksheetFromFile
Examples

```r
# errorCell.xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/errorCell.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Set error behavior to XLCERROR.WARN when detecting error cells
# Note: this is the default behavior
onErrorCell(wb, XLCERROR.WARN)
# Alternatively: wb$onErrorCell(XLCERROR.WARN)

# Read named region 'MyData' (with default header = TRUE)
data <- readNamedRegion(wb, name = "MyData")

# Now set error behavior to XLCERROR.STOP to immediately
# issue an exception and stop in case an error cell is
# detected
onErrorCell(wb, XLCERROR.STOP)
# Alternatively: wb$onErrorCell(XLCERROR.STOP)

# Read (again) named region 'MyData' (with default header = TRUE)
res <- try(readNamedRegion(wb, name = "MyData"))
# Did we get an error?
print(is(res, "try-error"))
```

print-methods

Print a workbook’s filename

Description

Prints the workbook’s underlying filename.

Usage

```r
## S4 method for signature 'workbook'
print(x,...)
```

Arguments

- `x` The workbook to print
- `...` Arguments passed on to standard print

Details

Prints the specified workbook’s filename (see also the S4 filename slot of the workbook class).
readNamedRegion

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook

Examples

Load existing demo Excel file 'mtcars.xlsx' from the XLConnect package
wb.mtcars <- loadWorkbook(system.file("demoFiles/mtcars.xlsx",
package = "XLConnect"))

Print the workbook's underlying filename
print(wb.mtcars)

readNamedRegion Reading named regions from a workbook

Description

Reads named regions from a workbook.

Usage

S4 method for signature 'workbook'
readNamedRegion(object, name, header, rownames, colTypes, forceConversion,
datetimeFormat, check.names, useCachedValues, keep, drop, simplify, readStrategy)

Arguments

object The workbook to use
name The name of the named region to read
header The argument header specifies if the first row should be interpreted as column
 names. The default value is TRUE.
rownames Index (numeric) or name (character) of column that should be used as row
 names. The corresponding column will be removed from the data set. Defaults
to NULL which means that no row names are applied. Row names must be either
 integer or character. Non-numeric columns will be coerced to character.

colTypes Column types to use when reading in the data. Specified as a character vec-
 tor of the corresponding type names (see XLC; XLC$DATA_TYPE.<?>). You may
 also use R class names such as numeric, character, logical and POSIXt.
 The types are applied in the given order to the columns - elements are recycled
 if necessary. Defaults to character(0) meaning that column types are deter-
 mined automatically (see the Note section for more information).
By default, type conversions are only applied if the specified column type is a more generic type (e.g. from Numeric to String) - otherwise NA is returned. The forceConversion flag can be set to force conversion into less generic types where possible.

forceConversion

logical specifying if conversions to less generic types should be forced. Defaults to FALSE meaning that if a column is specified to be of a certain type via the colTypes argument and a more generic type is detected in the column, then NA will be returned (example: column is specified to be DateTime but a more generic String is found). Specifying forceConversion = TRUE will try to enforce a conversion - if it succeeds the corresponding (converted) value will be returned, otherwise NA. See the Note section for some additional information.

dateTimeFormat

Date/time format used when doing date/time conversions. Defaults to getOption("XLConnect.dateTimeFormat"). This should be a POSIX format specifier according to strftime although not all specifications have been implemented yet - the most important ones however are available.

check.names

logical specifying if column names of the resulting data.frame should be checked to ensure that they are syntactically valid valid variable names and are not duplicated. See the check.names argument of data.frame. Defaults to TRUE.

useCachedValues

logical specifying whether to read cached formula results from the workbook instead of re-evaluating them. This is particularly helpful in cases for reading data produced by Excel features not supported in XLConnect like references to external workbooks. Defaults to FALSE, which means that formulas will be evaluated by XLConnect.

keep

List of column names or indices to be kept in the output data frame. It is possible to specify either keep or drop, but not both at the same time. Defaults to NULL. If a vector is passed as argument, it will be wrapped into a list. This list gets replicated to match the length of the other arguments. Example: if name = c("NamedRegion1", "NamedRegion2", "NamedRegion3") and keep = c(1,2), keep will be internally converted into list(c(1,2)) and then replicated to match the number of named regions, i.e. keep = list(c(1,2), c(1,2), c(1,2)). The result is that the first two columns of each named region are kept. If keep = list(1,2) is specified, it will be replicated as list(1,2,1), i.e. respectively the first, second and first column of the named regions "NamedRegion1", "NamedRegion2", "NamedRegion3" will be kept.

drop

List of column names or indices to be dropped in the output data frame. It is possible to specify either keep or drop, but not both at the same time. Defaults to NULL. If a vector is passed as argument, it will be wrapped into a list. This list gets replicated to match the length of the other arguments. Example: if name = c("NamedRegion1", "NamedRegion2", "NamedRegion3") and drop = c(1,2), drop will be internally converted into list(c(1,2)) and then replicated to match the number of named regions, i.e. drop = list(c(1,2), c(1,2), c(1,2)). The result is that the first two columns of each named region are dropped. If drop = list(1,2) is specified, it will be replicated as list(1,2,1), i.e. respectively the first, second and first column of the named regions "NamedRegion1", "NamedRegion2", "NamedRegion3" will be dropped.
logical specifying if the result should be simplified, e.g. in case the data frame would only have one row or one column (and data types match). Simplifying here is identical to calling unlist on the otherwise resulting data frame (using use.names = FALSE). The default is FALSE.

readStrategy character specifying the reading strategy to use. Currently supported strategies are:

- "default" (default): Can handle all supported data types incl. date/time values and can deal directly with missing value identifiers (see setMissingValue)
- "fast": Increased read performance. Date/time values are read as numeric (number of days since 1900-01-01; fractional days represent hours, minutes, and seconds) and only blank cells are recognized as missing (missing value identifiers as set in setMissingValue are ignored)

Details

The arguments name and header are vectorized. As such, multiple named regions can be read with one method call. If only one single named region is read, the return value is a data frame. If multiple named regions are specified, the return value is a (named) list of data frames returned in the order they have been specified with the argument name.

Note

If no specific column types (see argument colTypes) are specified, readNamedRegion tries to determine the resulting column types based on the read cell types. If different cell types are found in a specific column, the most general of those is used and mapped to the corresponding R data type. The order of data types from least to most general is Boolean (logical) < DateTime (POSIXct) < Numeric (numeric) < String (character). E.g. if a column is read that contains cells of type Boolean, Numeric and String then the resulting column in R would be character since character is the most general type.

Some additional information with respect to forcing data type conversion using forceConversion = TRUE:

- Forcing conversion from String to Boolean: TRUE is returned if and only if the target string is "true" (ignoring any capitalization). Any other string will return FALSE.
- Forcing conversion from Numeric to DateTime: since Excel understands Dates/Times as Numerics with some additional formatting, a conversion from a Numeric to a DateTime is actually possible. Numerics in this case represent the number of days since 1900-01-00 (yes, day 00! - see http://www.cpearson.com/excel/datetime.htm). Note that in R 0 is represented as 1899-12-31 since there is no 1900-01-00. Fractional days represent hours, minutes, and seconds.

Author(s)

Martin Studer
Thomas Themel
Nicola Lambiase
Mirai Solutions GmbH http://www.mirai-solutions.com
References

What are named regions/ranges?
http://www.officearticles.com/excel/named_ranges_in_microsoft_excel.htm

How to create named regions/ranges?
http://www.youtube.com/watch?v=iAE9a0uRtpM

See Also

workbook, readWorksheet, writeNamedRegion,
writeWorksheet, readNamedRegionFromFile, readTable, onErrorCell

Examples

```r
## Example 1:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

data <- readNamedRegion(wb, name = "mtcars")

## Example 2:
# conversion xlsx file from demoFiles subfolder of package XLConnect
tempFile <- system.file("demoFiles/conversion.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(tempFile)

# Read named region 'conversion' with pre-specified column types
# Note: in the worksheet all data was entered as strings!
# forceConversion = TRUE is used to force conversion from String
# into the less generic data types Numeric, DateTime & Boolean
df <- readNamedRegion(wb, name = "conversion", header = TRUE,
colTypes = c(xl$DATA_TYPE.NUMERIC,
             xl$DATA_TYPE.DATETIME,
             xl$DATA_TYPE.BOOLEAN),
forceConversion = TRUE,
dateTimeFormat = "%Y-%m-%d %H:%M:%S")

## Example 3:
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Read the columns 1, 3 and 5 of the named region 'mtcars' (with default header = TRUE)
data <- readNamedRegion(wb, name = "mtcars", keep=c(1,3,5))
```
Description

Reads named regions from an Excel file.

Usage

readNamedRegionFromFile(file, ...)

Arguments

file The file name of the workbook to read
... Arguments passed to readNamedRegion

Details

This is a convenience wrapper to read named regions from a file without creating an intermediate workbook object. See readNamedRegion for more details.

Author(s)

Thomas Themel
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

readNamedRegion, readWorksheetFromFile, writeNamedRegionToFile, writeWorksheetToFile, onErrorCell

Examples

multiregion xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/multiregion.xlsx", package = "XLConnect")

Load a single named region into a single data.frame.
df <- readNamedRegionFromFile(demoExcelFile, name="Iris")

Load multiple regions at once - returns a (named) list
of data.frames.
df <- readNamedRegionFromFile(demoExcelFile,
 name=c("Calendar", "Iris", "IQ"))
readTable

Reading Excel tables from a workbook

Description

Reads Excel tables (Office 2007+) from a workbook.

Usage

```r
## S4 method for signature 'workbook,numeric'
readTable(object, sheet, table, header, rownames, colTypes, forceConversion,
dateTimeFormat, check.names, useCachedValues, keep, drop, simplify, readStrategy)

## S4 method for signature 'workbook,character'
readTable(object, sheet, table, header, rownames, colTypes, forceConversion,
dateTimeFormat, check.names, useCachedValues, keep, drop, simplify, readStrategy)
```

Arguments

- `object` The workbook to use
- `sheet` The index or name of the worksheet on which to look for the specified table
- `table` The name of the table to read
- `header` The argument header specifies if the first row should be interpreted as column names. The default value is `TRUE`.
- `rownames` Index (numeric) or name (character) of column that should be used as row names. The corresponding column will be removed from the data set. Defaults to `NULL` which means that no row names are applied.
- `colTypes` Column types to use when reading in the data. Specified as a character vector of the corresponding type names (see `XLC; XLC$DATA_TYPE`.<@>). You may also use R class names such as numeric, character, logical and POSIXt. The types are applied in the given order to the columns - elements are recycled if necessary. Defaults to `character` meaning that column types are determined automatically (see the Note section for more information). By default, type conversions are only applied if the specified column type is a more generic type (e.g. from Numeric to String) - otherwise NA is returned. The `forceConversion` flag can be set to force conversion into less generic types where possible.
- `forceConversion` logical specifying if conversions to less generic types should be forced. Defaults to `FALSE` meaning that if a column is specified to be of a certain type via the `colTypes` argument and a more generic type is detected in the column, then NA will be returned (example: column is specified to be DateTime but a more generic String is found). Specifying `forceConversion = TRUE` will try to enforce a conversion - if it succeeds the corresponding (converted) value will be returned, otherwise NA. See the Note section for some additional information.
dateTimeFormat Date/time format used when doing date/time conversions. Defaults to
getOption("XLConnect.dateTimeFormat"). This should be a POSIX format
specifier according to strptime although not all specifications have been im-
plemented yet - the most important ones however are available.

check.names logical specifying if column names of the resulting data.frame should be
checked to ensure that they are syntactically valid variable names and are
not duplicated. See the check.names argument of data.frame. Defaults to
TRUE.

useCachedValues logical specifying whether to read cached formula results from the workbook
instead of re-evaluating them. This is particularly helpful in cases for reading
data produced by Excel features not supported in XLConnect like references
to external workbooks. Defaults to FALSE, which means that formulas will be
evaluated by XLConnect.

keep List of column names or indices to be kept in the output data frame. It is possible
to specify either keep or drop, but not both at the same time. Defaults to NULL.
If a vector is passed as argument, it will be wrapped into a list. This list gets
replicated to match the length of the other arguments.

drop List of column names or indices to be dropped in the output data frame. It is
possible to specify either keep or drop, but not both at the same time. Defaults
to NULL. If a vector is passed as argument, it will be wrapped into a list. This list
gets replicated to match the length of the other arguments.

simplify logical specifying if the result should be simplified, e.g. in case the data.frame
would only have one row or one column (and data types match). Simplifying
here is identical to calling unlist on the otherwise resulting data.frame (using
use.names = FALSE). The default is FALSE.

readStrategy character specifying the reading strategy to use. Currently supported strategies
are:
 • "default": Can handle all supported data types incl. date/time
 values and can deal directly with missing value identifiers (see
 setMissingValue)
 • "fast": Increased read performance. Date/time values are read as numeric
 (number of days since 1900-01-01; fractional days represent hours, min-
 utes, and seconds) and only blank cells are recognized as missing (missing
 value identifiers as set in setMissingValue are ignored)

Note

If no specific column types (see argument colTypes) are specified, readNamedRegion tries to de-
terminate the resulting column types based on the read cell types. If different cell types are found in
a specific column, the most general of those is used and mapped to the corresponding R data type.
The order of data types from least to most general is Boolean (logical) < DateTime (POSIXct)
< Numeric (numeric) < String (character). E.g. if a column is read that contains cells of type
Boolean, Numeric and String then the resulting column in R would be character since character
is the most general type.

Some additional information with respect to forcing data type conversion using forceConversion = TRUE:
• Forcing conversion from String to Boolean: TRUE is returned if and only if the target string is "true" (ignoring any capitalization). Any other string will return FALSE.

• Forcing conversion from Numeric to DateTime: since Excel understands Dates/Times as Numerics with some additional formatting, a conversion from a Numeric to a DateTime is actually possible. Numerics in this case represent the number of days since 1900-01-01. Fractional days represent hours, minutes, and seconds.

Author(s)
Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

References
Overview of Excel tables

See Also
workbook, readNamedRegion, readWorksheet, writeNamedRegion, writeWorksheet, readNamedRegionFromFile, onErrorCell

Examples

```r
# mtcars.xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Read table 'MtcarsTable' from sheet 'mtcars_table'
data <- readTable(wb, sheet = "mtcars_table", table = "MtcarsTable")
```

Description

Reads data from worksheets of a workbook.

Usage

```r
## S4 method for signature 'workbook,numeric'
readWorksheet(object, sheet, startRow, startCol, endRow, endCol, autofitRow, autofitCol, region, header, rownames, colTypes, forceConversion, dateTimeFormat, check.names, useCachedValues, keep, drop, simplify, readStrategy)
## S4 method for signature 'workbook,character'
```
readWorksheet(object, sheet, startRow, startCol, endRow, endCol, autofitRow, autofitCol, region, header, rownames, colTypes, forceConversion, dateTimeFormat, check.names, useCachedValues, keep, drop, simplify, readStrategy)

Arguments

- **object**: The workbook to use.
- **sheet**: The name or index of the worksheet to read from.
- **startRow**: The index of the first row to read from. Defaults to 0 meaning that the start row is determined automatically.
- **startCol**: The index of the first column to read from. Defaults to 0 meaning that the start column is determined automatically.
- **endRow**: The index of the last row to read from. Defaults to 0 meaning that the end row is determined automatically.
- **endCol**: The index of the last column to read from. Defaults to 0 meaning that the end column is determined automatically.
- **autofitRow**: logical specifying if leading and trailing empty rows should be skipped. Defaults to TRUE.
- **autofitCol**: logical specifying if leading and trailing empty columns should be skipped. Defaults to TRUE.
- **region**: A range specifier in the form 'A10:B18'. This provides an alternative way to specify startRow, startCol, endRow and endCol. Range specifications take precedence over index specifications.
- **header**: Interpret the first row of the specified area as column headers. The default is TRUE.
- **rownames**: Index (numeric) or name (character) of column that should be used as row names. The corresponding column will be removed from the data set. Defaults to NULL which means that no row names are applied. Row names must be either integer or character. Non-numeric columns will be coerced to character.
- **colTypes**: Column types to use when reading in the data. Specified as a character vector of the corresponding type names (see XLC; XLC$DATA_TYPE.<>). You may also use R class names such as numeric, character, logical and POSIXt. The types are applied in the given order to the columns - elements are recycled if necessary. Defaults to character(0) meaning that column types are determined automatically (see the Note section for more information). By default, type conversions are only applied if the specified column type is a more generic type (e.g. from Numeric to String) - otherwise NA is returned. The forceConversion flag can be set to force conversion into less generic types where possible.
- **forceConversion**: logical specifying if conversions to less generic types should be forced. Defaults to FALSE meaning that if a column is specified to be of a certain type via the colTypes argument and a more generic type is detected in the column, then NA will be returned (example: column is specified to be DateTime but a more...
generic String is found). Specifying `forceConversion = TRUE` will try to enforce a conversion - if it succeeds the corresponding (converted) value will be returned, otherwise NA. See the Note section for some additional information.

dateTimeFormat
Date/time format used when doing date/time conversions. Defaults to `getOption("XLConnect.dateTimeFormat")`. This should be a POSIX format specifier according to `strptime` although not all specifications have been implemented yet - the most important ones however are available. When using the '%OS' specification for fractional seconds (without an additional integer) 3 digits will be used by default (getOption("digits.secs") is not considered).

check.names logical specifying if column names of the resulting data.frame should be checked to ensure that they are syntactically valid variable names and are not duplicated. See the check.names argument of `data.frame`. Defaults to TRUE.

useCachedValues logical specifying whether to read cached formula results from the workbook instead of re-evaluating them. This is particularly helpful in cases for reading data produced by Excel features not supported in XLConnect like references to external workbooks. Defaults to FALSE, which means that formulas will be evaluated by XLConnect.

keep
Vector of column names or indices to be kept in the output data frame. It is possible to specify either keep or drop, but not both at the same time. Defaults to NULL. If a vector is passed as argument, it will be wrapped into a list. This list gets replicated to match the length of the other arguments. Example: if `sheet = c("Sheet1", "Sheet2", "Sheet3")` and `keep = c(1,2)`, `keep` will be internally converted into `list(c(1,2))` and then replicated to match the number of sheets, i.e. `keep = list(c(1,2), c(1,2), c(1,2))`. The result is that the first two columns of each sheet are kept. If `keep = list(1,2)` is specified, it will be replicated as `list(1,2,1)`, i.e. respectively the first, second and first column of the sheets "Sheet1", "Sheet2", "Sheet3" will be kept.

drop
Vector of column names or indices to be dropped in the output data frame. It is possible to specify either keep or drop, but not both at the same time. Defaults to NULL. If a vector is passed as argument, it will be wrapped into a list. This list gets replicated to match the length of the other arguments. Example: if `sheet = c("Sheet1", "Sheet2", "Sheet3")` and `drop = c(1,2)`, `drop` will be internally converted into `list(c(1,2))` and then replicated to match the number of sheets, i.e. `drop = list(c(1,2), c(1,2), c(1,2))`. The result is that the first two columns of each sheet are dropped. If `drop = list(1,2)` is specified, it will be replicated as `list(1,2,1)`, i.e. respectively the first, second and first column of the sheets "Sheet1", "Sheet2", "Sheet3" will be dropped.

simplify logical specifying if the result should be simplified, e.g. in case the data.frame would only have one row or one column (and data types match). Simplifying here is identical to calling `unlist` on the otherwise resulting data.frame (using `use.names = FALSE`). The default is FALSE.

readStrategy character specifying the reading strategy to use. Currently supported strategies are:
- "default" (default): Can handle all supported data types incl. date/time values and can deal directly with missing value identifiers (see `setMissingValue`)
• "fast": Increased read performance. Date/time values are read as numeric (number of days since 1900-01-01; fractional days represent hours, minutes, and seconds) and only blank cells are recognized as missing (missing value identifiers as set in setMissingValue are ignored)

Details

Reads data from the worksheet specified by sheet. Data is read starting at the top left corner specified by startRow and startCol down to the bottom right corner specified by endRow and endCol.

If header = TRUE, the first row is interpreted as column names of the resulting data.frame.

If startRow <= 0 then the first available row in the sheet is assumed. If endRow <= 0 then the last available row in the sheet is assumed. If startCol <= 0 then the minimum column between startRow and endRow is assumed. If endCol <= 0 then the maximum column between startRow and endRow is assumed. In other words, if no boundaries are specified readWorksheet assumes the "bounding box" of the data as the corresponding boundaries.

The arguments autofitRow and autofitCol (both defaulting to TRUE) can be used to skip leading and trailing empty rows even in case startRow, endRow, startCol and endCol are specified to values > 0. This can be useful if data is expected within certain given boundaries but the exact location is not available.

If all four coordinate arguments are missing this behaves as above with startRow = 0, startCol = 0, endRow = 0 and endCol = 0. In this case readWorksheet assumes the "bounding box" of the data as the corresponding boundaries.

All arguments (except object) are vectorized. As such, multiple worksheets (and also multiple data regions from the same worksheet) can be read with one method call. If only one single data region is read, the return value is a data.frame. If multiple data regions are specified, the return value is a list of data.frame's returned in the order they have been specified. If worksheets have been specified by name, the list will be a named list named by the corresponding worksheets.

Note

If no specific column types (see argument colTypes) are specified, readWorksheet tries to determine the resulting column types based on the read cell types. If different cell types are found in a specific column, the most general of those is used and mapped to the corresponding R data type.

The order of data types from least to most general is Boolean (logical) < DateTime (POSIXct) < Numeric (numeric) < String (character). E.g. if a column is read that contains cells of type Boolean, Numeric and String then the resulting column in R would be character since character is the most general type.

Some additional information with respect to forcing data type conversion using forceConversion = TRUE:

• Forcing conversion from String to Boolean: TRUE is returned if and only if the target string is "true" (ignoring any capitalization). Any other string will return FALSE.
• Forcing conversion from Numeric to DateTime: since Excel understands Dates/Times as Numerics with some additional formatting, a conversion from a Numeric to a DateTime is actually possible. Numerics in this case represent the number of days since 1900-01-00 (yes,
readWorksheet-methods

day 00! - see http://www.cpearson.com/excel/datetime.htm). Note that in R 0 is represented as 1899-12-31 since there is no 1900-01-00. Fractional days represent hours, minutes, and seconds.

Author(s)
Martin Studer
Thomas Themel
Nicola Lambiase
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also
workbook, writeWorksheet, readNamedRegion, writeNamedRegion,
readWorksheetFromFile, readTable, onErrorCell

Examples

 ## Example 1:
 # mtcars.xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

 # Load workbook
 wb <- loadWorkbook(demoExcelFile)

 # Read worksheet 'mtcars' (providing no specific area bounds;
 # with default header = TRUE)
data <- readWorksheet(wb, sheet = "mtcars")

 ## Example 2:
 # mtcars.xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

 # Load workbook
 wb <- loadWorkbook(demoExcelFile)

 # Read worksheet 'mtcars' (providing area bounds; with default header = TRUE)
data <- readWorksheet(wb, sheet = "mtcars", startRow = 1, startCol = 3,
 endRow = 15, endCol = 8)

 ## Example 3:
 # mtcars.xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

 # Load workbook
 wb <- loadWorkbook(demoExcelFile)

 # Read worksheet 'mtcars' (providing area bounds using the region argument;
 # with default header = TRUE)
data <- readWorksheet(wb, sheet = "mtcars", region = "C1:H15")
Example 4:
conversion xlsx file from demoFiles subfolder of package XLConnect
excelFile <- system.file("demoFiles/conversion.xlsx", package = "XLConnect")

Load workbook
wb <- loadWorkbook(excelFile)

Read worksheet 'Conversion' with pre-specified column types
Note: in the worksheet all data was entered as strings!
forceConversion = TRUE is used to force conversion from String
into the less generic data types Numeric, DateTime & Boolean
df <- readWorksheet(wb, sheet = "Conversion", header = TRUE,
 colTypes = c(XLC$DATA_TYPE.NUMERIC,
 XLC$DATA_TYPE.DATETIME,
 XLC$DATA_TYPE.BOOLEAN),
 forceConversion = TRUE,
 dateFormat = "%Y-%m-%d %H:%M:%S")

Example 5:
mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

Load workbook
wb <- loadWorkbook(demoExcelFile)

Read the columns 1, 3 and 5 from the sheet 'mtcars' (with default header = TRUE)
data <- readWorksheet(wb, sheet = "mtcars", keep=c(1,3,5))

readWorksheetFromfile
Reading data from worksheets in an Excel file (wrapper function)

Description

Reads data from worksheets in an Excel file.

Usage

```
readWorksheetFromfile(file, ...)  
```

Arguments

- **file**: The path name of the file to read from.
- **...**: Arguments passed to `readWorksheet`

Details

See `readWorksheet` for more information.
Author(s)

Thomas Themel
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

readWorksheet, readNamedRegionFromFile, writeWorksheetToFile, writeNamedRegionToFile, onerrorCell

Examples

```r
# multiregion xlsx file from demofiles subfolder of
# package XLConnect
demoExcelFile <- system.file("demofiles/multiregion.xlsx", package = "XLConnect")

# Read single area from first sheet of existing file,
# "B2:C3" in Excel speak
df.one <- readWorksheetFromFile(demoExcelFile, sheet = 1, header = FALSE, startCol = 2, startRow = 2, endCol = 3, endRow = 3)

# Read three data sets in one from known positions
dflist <- readWorksheetFromFile(demoExcelFile, sheet = c("FirstSheet", "FirstSheet", "SecondSheet"), header = TRUE, startRow = c(2,2,3), startCol = c(2,5,2), endCol = c(5,8,6), endRow = c(9,15,153))
```

removeName-methods Removing names from workbooks

Description

Removes a name from a workbook.

Usage

```r
## S4 method for signature 'workbook'
removeName(object, name)
```

Arguments

- `object` : The workbook to use
- `name` : The name to delete
Details

Removes the name named name from the specified workbook object if it does exist. Multiple names can be specified to be removed.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook, createName, existsName,
getDefinedNames, readNamedRegion, writeNamedRegion

Examples

mtcars.xlsx file from demoFiles subfolder of package XLConnect
mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

Load workbook
wb <- loadWorkbook(mtcarsFile)

Remove the named region called 'mtcars' from the above file
(this named region is defined as 'mtcars!A1:K33')
removeName(wb, name = "mtcars")
Note

To keep an area of a worksheet visible while you scroll to another area of the worksheet, you can lock specific rows or columns in one area by freezing or splitting panes.

When you freeze panes, you keep specific rows or columns visible when you scroll in the worksheet. For example, you might want to keep row and column labels visible as you scroll.

When you split panes, you create separate worksheet areas that you can scroll within, while rows or columns in the non-scrolled area remain visible.

Author(s)

Nicola Lambiase
Mirai Solutions GmbH http://www.mirai-solutions.com

References

See Also

workbook createFreezePane createSplitPane

Examples

Load workbook (create if not existing)
wb <- loadWorkbook("removePaneTest.xlsx", create = TRUE)

Create a worksheet named 'Sheet1'
createSheet(wb, name = "Sheet1")

Create a split pane on Sheet1, with coordinates (10000, 5000) expressed as 1/20th of a point, # 10 (-> J) as left column visible in right pane and 10 as top row visible in bottom pane
createSplitPane(wb, "Sheet1", 10000, 5000, 10, 10)

Remove the split pane from Sheet1
removePane(wb, "Sheet1")

Save workbook (this actually writes the file to disk). Now the workbook has no split pane.
saveWorkbook(wb)
renameSheet-methods

Usage

```r
## S4 method for signature 'workbook,character'
removeSheet(object, sheet)
## S4 method for signature 'workbook,numeric'
removeSheet(object, sheet)
```

Arguments

- `object`: The `workbook` to use
- `sheet`: The name or index of the sheet to remove

Note

When removing a worksheet that is the currently active sheet then `XLConnect` resets the active sheet to the first possible worksheet in the `workbook`. Also note that deleting worksheets may result in invalid name references.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

- `workbook`, `createSheet`, `existsSheet`, `getSheets`, `renameSheet`, `cloneSheet`, `setActiveSheet`

Examples

```r
# mtcars.xlsx file from demoFiles subfolder of package XLConnect
tcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(mtcarsFile)

# Remove the worksheet called 'mtcars' from the above file
removeSheet(wb, sheet = "mtcars")
```

Description

Renames a worksheet from a `workbook`.
Usage

```r
## S4 method for signature 'workbook,character'
renameSheet(object, sheet, newName)
## S4 method for signature 'workbook,numeric'
renameSheet(object, sheet, newName)
```

Arguments

- `object` The `workbook` to use
- `sheet` The name or index of the sheet to rename
- `newName` The new name of the sheet

Note

Note that renaming worksheets may result in invalid name references.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `createSheet`, `existsSheet`, `getSheets`, `removeSheet`, `cloneSheet`, `setActiveSheet`

Examples

```r
# mtcars.xlsx file from demoFiles subfolder of package XLConnect
tcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(tcarsFile)

# Rename the worksheet called 'mtcars' from the above file to 'MyCars'
renameSheet(wb, sheet = "mtcars", newName = "MyCars")
```

Description

Saves a `workbook` to the corresponding Excel file. This method actually writes the `workbook` object to disk.
Usage

```r
## S4 method for signature 'workbook,missing'
saveWorkbook(object, file)
## S4 method for signature 'workbook,character'
saveWorkbook(object, file)
```

Arguments

- **object**: The *workbook* to save.
- **file**: The file to which to save the *workbook* ("save as"). If not specified (missing), the workbook will be saved to the *workbook*'s underlying file which is the file specified in `loadWorkbook` (also see the *workbook* class for more information). Note that due to currently missing functionality in Apache POI, workbooks can only be saved in the same file format - i.e. if the workbooks underlying file format is xls, then the `file` argument may only specify another xls file. Also note that when specifying the `file` argument the *workbook*'s underlying filename changes to reflect the "save as" behavior. Paths are expanded using `path.expand`.

Details

Saves the specified *workbook* object to disk.

Note

As already mentioned in the documentation of the *workbook* class, a *workbook*'s underlying Excel file is not saved (or being created in case the file did not exist and `create = TRUE` has been specified) unless the `saveWorkbook` method has been called on the object. This provides more flexibility to the user to decide when changes are saved and also provides better performance in that several changes can be written in one go (normally at the end, rather than after every operation causing the file to be rewritten again completely each time). This is due to the fact that workbooks are manipulated in-memory and are only written to disk with specifically calling `saveWorkbook`.

Further note that calling `saveWorkbook` more than once leads to an exception. This is due to a current issue in the underlying POI libraries. However, with `XLConnect` there should be no need to call `saveWorkbook` more than once so virtually this is no issue.

Author(s)

- Martin Studer

See Also

- `workbook`, `loadWorkbook`
Examples

```r
# Create a new workbook 'saveMe.xlsx'
# (assuming the file to not exist already)
wb <- loadWorkbook("saveMe.xlsx", create = TRUE)

# Create a worksheet called 'mtcars'
createSheet(wb, name = "mtcars")

# Write built-in dataset 'mtcars' to sheet 'mtcars' created above
writeWorksheet(wb, mtcars, sheet = "mtcars")

# Save workbook - this actually writes the file 'saveMe.xlsx' to disk
saveWorkbook(wb)
```

Description

Sets the active worksheet of a **workbook**.

Usage

```r
## S4 method for signature 'workbook,character'
setActiveSheet(object, sheet)
## S4 method for signature 'workbook,numeric'
setActiveSheet(object, sheet)
```

Arguments

- **object**: The **workbook** to use
- **sheet**: The name or index of the sheet to activate

Note

The active worksheet of a **workbook** is the worksheet that is displayed when the corresponding Excel file is opened.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook, createSheet, removeSheet, renameSheet, existsSheet, sheets`
Examples

```r
# mtcars.xlsx file from demoFiles subfolder of package XLConnect
mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(mtcarsFile)

# Sets the active sheet to the sheet 'mtcars3'
setActiveSheet(wb, sheet = "mtcars3")
```

Description

Sets an auto-filter on a specified worksheet.

Usage

```r
## S4 method for signature 'workbook,character'
setAutoFilter(object, sheet, reference)
## S4 method for signature 'workbook,numeric'
setAutoFilter(object, sheet, reference)
```

Arguments

- `object` The `workbook` to use
- `sheet` The name or index of the sheet on which to set the auto-filter
- `reference` A cell range specification (character) in the form 'A1:B8'

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

- `workbook`

Examples

```r
# Load workbook (create if not existing)
wb <- loadWorkbook("autofilter.xlsx", create = TRUE)

# Create a worksheet named 'mtcars'
createSheet(wb, name = "mtcars")

# Create a named region called 'mtcars' on the sheet called 'mtcars'
```
createName(wb, name = "mtcars", formula = "mtcars!A1")

Write built-in data set 'mtcars' to the above defined named region
(using header = TRUE)
writeNamedRegion(wb, mtcars, name = "mtcars")

Set an auto-filter for the named region written above
setAutoFilter(wb, sheet = "mtcars", reference = aref("A1", dim(mtcars)))

Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

setBorder-methods

Specifying borders for cell styles

Description

Specifies borders for a `cellstyle`.

Usage

```r
## S4 method for signature 'cellstyle'
setBorder(object, side, type, color)
```

Arguments

- **object**
 - The `cellstyle` to edit

- **side**
 - A vector with any combination of {"bottom", "left", "right", "top", "all"}

- **type**
 - Specifies the border type to be used - it is normally specified by a corresponding XLC constant (see the XLC border constant, e.g. XLC$"BORDER.MEDIUM_DASHED")

- **color**
 - Defines the border color and is normally also specified via an XLC constant.

Details

Specifies the border for a `cellstyle`. Note that the arguments type and color should be of the same length as side. In other words, for each specified side there should be a corresponding specification of type and color. If this is not the case the arguments will be automatically replicated to the length of side.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook, cellstyle, setCellStyle, setStyleAction, XLC`
Examples

```r
# Load workbook (create if not existing)
wb <- loadWorkbook("setBorder.xlsx", create = TRUE)

# Create a worksheet
createSheet(wb, name = "cellstyles")

# Create a custom anonymous cell style
cs <- createCellStyle(wb)

# Specify the border for the cell style created above
setBorder(cs, side = c("bottom", "right"), type = XLC$"BORDER.THICK",
          color = c(XLC$"COLOR.BLACK", XLC$"COLOR.RED"))

# Set the cell style created above for the top left cell (A1) in the
# 'cellstyles' worksheet
setCellStyle(wb, sheet = "cellstyles", row = 1, col = 1, cellstyle = cs)

# Save the workbook
saveWorkbook(wb)
```

Description

Sets cell formulas for specific cells in a **workbook**.

Usage

```r
## S4 method for signature 'workbook,character'
setCellFormula(object, sheet, row, col, formula)

## S4 method for signature 'workbook,numeric'
setCellFormula(object, sheet, row, col, formula)
```

Arguments

- **object**: The **workbook** to use
- **sheet**: Name or index of the sheet the cell is on
- **row**: Row index of the cell to edit
- **col**: Column index of the cell to edit
- **formula**: The formula to apply to the cell, without the initial = character used in Excel

Details

Note that the arguments are vectorized such that multiple cells can be set with one method call.
setCellStyle-methods

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook, getCellFormula.

Examples

Load workbook (create if not existing)
wb <- loadWorkbook("setCellFormula.xls", create = TRUE)

Create a sheet named 'mtcars'
createSheet(wb, name = "mtcars")

Create a named region called 'mtcars' referring to the sheet
called 'mtcars'
createName(wb, name = "mtcars", formula = "mtcars!A$1")

Write built-in data set 'mtcars' to the above defined named region.
writeNamedRegion(wb, mtcars, name = "mtcars")

Now, let us get Excel to calculate average weights.
Where did we write the dataset?
corners <- getReferenceCoordinatesForName(wb, "mtcars")
Put the average under the wt column
colIndex <- which(names(mtcars) == "wt")
rowIndex <- corners[2,1] + 1

Construct the input range & formula
input <- paste(idx2ceref(c(corners[1,1], colIndex,
corners[2,1], colIndex)), collapse="::")
formula <- paste("AVERAGE(" , input , ")", sep="")

setCellFormula(wb, "mtcars", rowIndex, colIndex, formula)

Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

Description

Sets cell styles for specific cells in a workbook.
setCellStyle-methods

Usage

```r
## S4 method for signature 'workbook,missing,character'
setCellStyle(object, formula, sheet, row, col, cellstyle)
## S4 method for signature 'workbook,missing,numeric'
setCellStyle(object, formula, sheet, row, col, cellstyle)
## S4 method for signature 'workbook,character,missing'
setCellStyle(object, formula, sheet, row, col, cellstyle)
```

Arguments

- `object` The *workbook* to use
- `formula` A formula specification in the form Sheet!B8:C17. Use either the argument `formula` or the combination of `sheet`, `row` and `col`.
- `sheet` Name or index of the sheet the cell is on. Use either the argument `formula` or the combination of `sheet`, `row` and `col`.
- `row` Row index of the cell to apply the cellstyle to.
- `col` Column index of the cell to apply the cellstyle to.
- `cellstyle` *cellstyle* to apply

Details

Sets the specified *cellstyle* for the specified cell (`row, col`) on the specified sheet or alternatively for the cells referred to by `formula`. Note that the arguments are vectorized such that multiple cells can be styled with one method call. Use either the argument `formula` or the combination of `sheet, row` and `col`.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

* `workbook`, `cellstyle`, `createCellStyle`, `setDataFormat`, `setBorder`, `setFillBackgroundColor`, `setFillForegroundColor`, `setFillPattern`, `setWrapText`

Examples

```r
# Load workbook (create if not existing)
wb <- loadWorkbook("setCellStyle.xlsx", create = TRUE)

# We don't set a specific style action in this demo, so the default
# 'XLConnect' will be used (XLC$"STYLE_ACTION.XLCONNECT")

# Create a sheet named 'mtcars'
createSheet(wb, name = "mtcars")
```
Create a named region called 'mtcars' referring to the sheet called 'mtcars'
csetName(wb, name = "mtcars", formula = "mtcars!C4")

Write built-in data set 'mtcars' to the above defined named region. # This will use the default style action 'XLConnect'.
writeNamedRegion(wb, mtcars, name = "mtcars")

Now let's color all weight cells of cars with a weight > 3.5 in red # (mtcars$wt > 3.5)

First, create a corresponding (named) cell style
heavyCar <- createCellStyle(wb, name = "HeavyCar")

Specify the cell style to use a solid foreground color
setFillPattern(heavyCar, fill = XLC$"FILL.SOLID_FOREGROUND")

Specify the foreground color to be used
setFillForegroundColor(heavyCar, color = XLC$"COLOR.RED")

Which cars have a weight > 3.5 ?
rowIndex <- which(mtcars$wt > 3.5)

NOTE: The mtcars data.frame has been written offset with # top left cell C4 - and we have also written a header row! # So, let's take that into account appropriately. Obviously, # the two steps could be combined directly into one ...
rowIndex <- rowIndex + 4

colIndex <- which(names(mtcars) == "wt") + 2

Set the 'HeavyCar' cell style for the corresponding cells. # Note: the row and col arguments are vectorized!
setCellStyle(wb, sheet = "mtcars", row = rowIndex, col = colIndex, cellstyle = heavyCar)

Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

setDescriptionForType-methods

Setting the cell style per data type for the DATATYPE style action

Description

Sets the cell style for a specific data type as used by the DATATYPE style action.
setCellStyleForType-methods

Usage

```r
## S4 method for signature 'workbook'
setCellStyleForType(object, type, style)
```

Arguments

- `object` The `workbook` to use
- `type` The data type for which to set the style
- `style` The `cellstyle` to set

Details

Based on the (cell) data type the DATATYPE style action (see `getStyleAction`) sets the `cellstyle` for the corresponding cells. The data type is normally specified via a corresponding data type constant from the `XLC` object.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `getCellStyleForType`, `getStyleAction`

Examples

```r
file.copy(system.file("demoFiles/template2.xlsx",
                      package = "XLConnect"),
          "datatype.xlsx", overwrite = TRUE)

# Load workbook
wb <- loadWorkbook("datatype.xlsx")

# Create a new cell style to be used
cs <- createCellStyle(wb, name = "mystyle")

# Set data format (number format) as numbers with aligned fractions
setDataFormat(cs, format = "# ???/??")

# Define the above created cell style as style to be used for numerics
setCellStyleForType(wb, type = XLC$"DATA_TYPE.NUMERIC", style = cs)
# Could also say cs <- setCellStyleForType(wb, "numeric")

# Set style action to 'datatype'
getStyleAction(wb, XLC$"STYLE_ACTION.DATATYPE")

# Write built-in data set 'mtcars' to the named region
# 'mtcars' as defined by the Excel template.
writeNamedRegion(wb, mtcars, name = "mtcars")

# Save workbook
saveWorkbook(wb)

---

**setColumnWidth-methods**

*Setting the width of a column in a worksheet*

**Description**

Sets the width of a column in a worksheet.

**Usage**

```r
S4 method for signature 'workbook,character'
setColumnWidth(object, sheet, column, width)
S4 method for signature 'workbook,numeric'
setColumnWidth(object, sheet, column, width)
```

**Arguments**

- **object**  
The workbook to use
- **sheet**  
The name or index of the sheet
- **column**  
The index of the column to resize
- **width**  
The width of the specified column in units of 1/256th of a character width. If \( width = -1 \) (default), the column is auto-sized. If negative otherwise, the column will be sized to the sheet’s default column width.

**Details**

Note that the arguments `sheet`, `column` and `width` are vectorized. As such the column width of multiple columns (potentially on different sheets) can be set with one method call.

**Author(s)**

Martin Studer
Mirai Solutions GmbH [http://www.mirai-solutions.com](http://www.mirai-solutions.com)

**See Also**

- `workbook`
- `setRowHeight`
**Examples**

```r
mtcars xlsx file from demoFiles subfolder of package XLConnect
mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

Load workbook
wb <- loadWorkbook(mtcarsFile)

Sets the column width of the 3rd column on sheet 'mtcars'
to 4000/256th (= 15.625) character width
setColumnWidth(wb, sheet = "mtcars", column = 3, width = 4000)
```

---

**Description**

Specifies a custom data format for a `cellstyle`.

**Usage**

```r
S4 method for signature 'cellstyle'
setDataFormat(object, format)
```

**Arguments**

- `object`: The `cellstyle` to use
- `format`: A data format string

**Details**

Specifies the data format to be used by the corresponding `cellstyle`. Data formats are specified the standard Excel way. Refer to the Excel help or to the link below for more information.

**Author(s)**

Martin Studer
Mirai Solutions GmbH [http://www.mirai-solutions.com](http://www.mirai-solutions.com)

**References**

Excel custom data formats:

**See Also**

`workbook, cellstyle, setCellStyle, setStyleAction`
setDataFormatForType-methods

Setting the data format for the DATA_FORMAT_ONLY style action

Description

Sets the data format for a specific data type as used by the DATA_FORMAT_ONLY style action.

Usage

```r
S4 method for signature 'workbook'
setDataFormatForType(object, type, format)
```

Arguments

- `object` The `workbook` to use
- `type` The data type for which to set the format.
- `format` A data format string
Details

Based on the (cell) data type the DATA_FORMATONLY style action (see `setStyleAction`) sets the data format for the corresponding cells. The data type is normally specified via a corresponding data type constant from the XLC object. Data formats are specified the standard Excel way. Refer to the Excel help or to the link below for more information.

Author(s)

Martin Studer
Mirai Solutions GmbH [http://www.mirai-solutions.com](http://www.mirai-solutions.com)

References

Excel custom data formats:

See Also

`workbook`, `setStyleAction`

Examples

```r
Copy existing Excel template to working directory
file.copy(system.file("demoFiles/template2.xlsx",
 package = "XLConnect"),
 "dataformat.xlsx", overwrite = TRUE)

Load workbook
wb <- loadWorkbook("dataformat.xlsx")

Set the data format for numeric columns (cells)
(keeping the defaults for all other data types)
setDataFormatForType(wb, type = XLC$"DATA_TYPE.NUMERIC",
 format = "0.00")

Set style action to 'data format only'
setStyleAction(wb, XLC$"STYLE_ACTION.DATA_FORMAT_ONLY")

Write built-in data set 'mtcars' to the named region
'mtcars' as defined by the Excel template.
writeNamedRegion(wb, mtcars, name = "mtcars")

Save workbook
saveWorkbook(wb)
```
setFillBackgroundColor-methods

Specifying the fill background color for cell styles

Description

Specifies the fill background color for a cellstyle.

Usage

```r
S4 method for signature 'cellstyle,numeric'
setFillBackgroundColor(object, color)
```

Arguments

- **object**: The cellstyle to manipulate
- **color**: The fill background color to use for the cellstyle. The color is normally specified via a corresponding color constant from the XLC object.

Author(s)

Martin Studer
Mirai Solutions GmbH [http://www.mirai-solutions.com](http://www.mirai-solutions.com)

See Also

workbook, cellstyle, setCellStyle, setStyleAction, XLC

Examples

```r
Load workbook (create if not existing)
w <- loadWorkbook("setFillBackgroundColor.xlsx", create = TRUE)

Create a worksheet
createSheet(wb, name = "cellstyles")

Create a custom anonymous cell style
cs <- createCellStyle(wb)

Specify the fill background color for the cell style created above
setFillBackgroundColor(cs, color = XLC$"COLOR.CORNFLOWER_BLUE")

Specify the fill foreground color
setFillForegroundColor(cs, color = XLC$"COLOR.YELLOW")

Specify the fill pattern
setFillPattern(cs, fill = XLC$"FILL.BIG_SPOTS")

Set the cell style created above for the top left cell (A1) in the
```
setFillForegroundColor-methods

Specifies the fill foreground color for a cellstyle.

Usage

```r
S4 method for signature 'cellstyle,numeric'
setFillForegroundColor(object, color)
```

Arguments

- `object`: The cellstyle to manipulate
- `color`: The fill foreground color to use for the cellstyle. The color is normally specified via a corresponding color constant from the XLC object.

Author(s)

Martin Studer
Mirai Solutions GmbH [http://www.mirai-solutions.com](http://www.mirai-solutions.com)

See Also

workbook, cellstyle, setCellStyle, setStyleAction, XLC

Examples

```r
Load workbook (create if not existing)
w <- loadWorkbook("setFillForegroundColor.xlsx", create = TRUE)

Create a worksheet
createSheet(wb, name = "cellstyles")

Create a custom anonymous cell style
cs <- createCellStyle(wb)

Specify the fill background color for the cell style created above
setFillBackgroundColor(cs, color = XLC$"COLOR.CORNFLOWER_BLUE")

Specify the fill foreground color
setFillForegroundColor(cs, color = XLC$"COLOR.YELLOW")

Specify the fill pattern
setFillPattern(cs, fill = XLC$"FILL.BIG_SPOTS")

Set the cell style created above for the top left cell (A1) in the
'cellstyles' worksheet
setCellStyle(wb, sheet = "cellstyles", row = 1, col = 1, cellstyle = cs)

Save the workbook
saveWorkbook(wb)

setFillPattern-methods

Specifying the fill pattern for cell styles

Description

Specifies the fill pattern for a cellstyle.

Usage

```r
## S4 method for signature 'cellstyle'
setFillPattern(object, fill)
```

Arguments

- `object`
The cellstyle to manipulate
- `fill`
The fill pattern to use for the cellstyle. fill is normally specified via a corresponding fill constant from the XLC object.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook, cellstyle, setCellStyle, setStyleAction, XLC

Examples

```r
# Load workbook (create if not existing)
w <- loadWorkbook("setFillPattern.xlsx", create = TRUE)

# Create a worksheet
createSheet(wb, name = "cellstyles")

# Create a custom anonymous cell style
```
setForceFormulaRecalculation-methods

Forcing Excel to recalculate formula values when opening a workbook

Description

This function controls a flag that forces Excel to recalculate formula values when a workbook is opened.

Usage

```r
## S4 method for signature 'workbook,character'
setForceFormulaRecalculation(object, sheet, value)
## S4 method for signature 'workbook,numeric'
setForceFormulaRecalculation(object, sheet, value)
```

Arguments

- `object`: The `workbook` to use
- `sheet`: The name or index of the sheet for which to force formula recalculation. If `sheet = "*"`, the flag is set for all sheets in the `workbook`.
- `value`: logical specifying if formula recalculation should be forced or not

Details

The arguments `sheet` and `value` are vectorized such that multiple worksheets can be controlled with one method call.
Note
A typical use for this flag is forcing Excel into updating formulas that reference cells affected by writeWorksheet or writeNamedRegion. The exact behavior of Excel when the flag is set depends on version and file format.

Author(s)
Thomas Themel
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also
workbook, getForceFormulaRecalculation

Examples
mtcars.xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

Load workbook
wb <- loadWorkbook(demoExcelFile)

Tell Excel to automatically recalculate formulas on sheet mtcars
setForceFormulaRecalculation(wb, sheet = "mtcars", TRUE)
The same with a numerical sheet index
setForceFormulaRecalculation(wb, sheet = 1, TRUE)

setMissingValue-methods
Setting missing value identifiers

Description
 Defines the set of missing values (character or numeric) used when reading and writing data.

Usage
S4 method for signature 'workbook,ANY'
setMissingValue(object, value)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>The workbook to use</td>
</tr>
<tr>
<td>value</td>
<td>vector or list of missing value identifiers (either character or numeric) that are recognized as missing (NA) when reading data. The first element of this vector will be used as missing value identifier when writing data. If value = NULL (default), missing values are represented by blank cells and only blank cells are recognized as missing.</td>
</tr>
</tbody>
</table>
setRowHeight-methods

Details

If there are no specific missing value identifiers defined the default behavior is to map missing values to blank (empty) cells. Otherwise, each string or numeric cell is checked if it matches one of the defined missing value identifiers. In addition, the first missing value identifier (i.e. the first element of the value argument) is used to represent missing values when writing data. Note that the missing value identifiers have to be either character or numeric.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook, writeNamedRegion, writeWorksheet

Examples

Load workbook (create if not existing)
w <- loadWorkbook("missingValue.xlsx", create = TRUE)

Create a worksheet named 'airquality'
createSheet(wb, name = "airquality")

Create a named region called 'airquality' on the sheet called
'airquality'
createName(wb, name = "airquality", formula = "airquality!A1")

Set the missing value string to 'missing'
setMissingValue(wb, value = "missing")

Write built-in data set 'airquality' to the above defined named region
writeNamedRegion(wb, airquality, name = "airquality")

Save workbook
saveWorkbook(wb)

setRowHeight-methods Setting the height of a row in a worksheet

Description

Sets the height of a row in a worksheet.

Usage

S4 method for signature 'workbook,character'
setRowHeight(object, sheet, row, height)
S4 method for signature 'workbook,numeric'
setRowHeight(object, sheet, row, height)
Arguments

- **object**: The workbook to use
- **sheet**: The name or index of the sheet to edit
- **row**: The index of the row to resize
- **height**: The height in points. If $height < 0$ (default: -1), the row will be sized to the sheet's default row height.

Details

Note that the arguments `sheet`, `row` and `height` are vectorized. As such the row height of multiple rows (potentially on different worksheets) can be set with one method call.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

- `workbook`, `setColumnWidth`

Examples

```r
# mtcars.xlsx file from demoFiles subfolder of package XLConnect
mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(mtcarsFile)

# Sets the row height of the 1st row on sheet 'mtcars'
# to 20 points
setRowHeight(wb, sheet = "mtcars", row = 1, height = 20)
```

Description

Sets a color on a specified worksheet tab. This only works for xlsx files.

Usage

```r
## S4 method for signature 'workbook,character'
setSheetColor(object, sheet, color)

## S4 method for signature 'workbook,numeric'
setSheetColor(object, sheet, color)
```
Arguments

- **object**
 - The **workbook** to use

- **sheet**
 - The name or index of the sheet on which to set the tab color

- **color**
 - The color to use for the sheet tab. The color is normally specified via a corresponding color constant from the **XLC** object.

Author(s)

Nicola Lambiase

Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

- **workbook**, **XLC**

Examples

```r
# Load workbook (create if not existing)
wbb <- loadWorkbook("sheetcolor.xlsx", create = TRUE)

# Create a worksheet named 'Sheet1'
ccreateSheet(wbb, name = "Sheet1")

# Set the "Sheet1" tab color as red
setColor(wbb, "Sheet1", XLC$COLOR.RED)

# Create a worksheet named 'Sheet2'
ccreateSheet(wbb, name = "Sheet2")

# Set the tab color of the second workbook sheet as green
setColor(wbb, 2, XLC$COLOR.GREEN)

# Save workbook (this actually writes the file to disk)
saveWorkbook(wbb)
```

Description

Sets the position of a worksheet in a **workbook**.

Usage

```r
## S4 method for signature 'workbook,character,numeric'
setSheetPos(object, sheet, pos)
```
Arguments

object The *workbook* to use
sheet The name of the worksheet (character) whose position to set. This argument is vectorized such that the positions of multiple worksheets can be set with one method call.
pos The position index to set for the corresponding sheet. If missing, sheets will be positioned in the order they are specified in the argument sheet.

Details

It is important to note that the worksheet positions will be applied one after the other in the order they have been specified.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `getSheetPos`, `getSheets`

Examples

```r
# mtcars xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect")

# Load workbook
wb <- loadWorkbook(demoExcelFile)

# Move the 'mtcars3' worksheet to the front
setSheetPos(wb, sheet = "mtcars3", pos = 1)
```

Description

Controls the application of *cellstyles* when writing data to Excel.

Usage

```r
## S4 method for signature 'workbook'
setStyleAction(object, type)
```
setStyleAction-methods

Arguments

- **object**
 - The workbook to use

- **type**
 - Defines the style action to be used when writing data (writeNamedRegion, writeWorksheet) to the specified workbook object

Details

The following style actions are supported:

- **XLC$"STYLE_ACTION.XLCONNECT"**: This is the default. Data frame headers (if specified to be written) are colored in solid light grey (25 percent). Character, numeric and logical vectors are written using Excel's "General" data format. Time/date vectors e.g. Date or POSIXt) are written with the "mm/dd/yyyy hh:mm:ss" data format. All cells are specified to wrap the text if necessary. The corresponding custom cell styles are called XLConnect.Header, XLConnect.String, XLConnect.Numeric, XLConnect.Boolean and XLConnect.Date.

- **XLC$"STYLE_ACTION.DATATYPE"**: This style action instructs XLConnect to apply cellstyles per data type as set by the setCellStyleForType methods. In contrast to the XLC$"STYLE_ACTION.DATA_FORMAT_ONLY" style action (see below) which only sets a data format to an existing cell style, this action actually sets a new cellstyle.

- **XLC$"STYLE_ACTION.NONE"**: This style action instructs XLConnect to apply no cell styles when writing data. Cell styles are kept as they are. This is useful in a scenario where all styling is predefined in an Excel template which is then only filled with data.

- **XLC$"STYLE_ACTION.PREDEFINED"**: This style action instructs XLConnect to use existing (predefined) cellstyles when writing headers and columns. This is useful in a template-based approach where an Excel template with predefined cellstyles for headers and columns is available. Normally, this would be used when the column dimensions (and potentially also the row dimensions) of the data tables are known up-front and as such a layout and corresponding cell styles can be pre-specified.

 If a data frame is written including its header, it is assumed that the Excel file being written to has predefined cellstyles in the header row. Furthermore, the first row of data is assumed to contain the cell styles to be replicated for any additional rows. As such, this style action may only be useful if the same column cell style should be applied across all rows. Please refer to the available demos for some examples.

- **XLC$"STYLE_ACTION.NAME_PREFIX"**: This style action instructs XLConnect to look for custom (named) cellstyles with a specified prefix when writing columns and headers. This style name prefix can be set via the method setStyleNamePrefix.

 For column headers, it first checks if there is a cell style named <STYLE_NAME_PREFIX>.Header.<COLUMN_NAME>. If there is no such cell style, it checks for a cell style named <STYLE_NAME_PREFIX>.Header.<COLUMN_INDEX>. Again, if there is no such cell style, it checks for <STYLE_NAME_PREFIX>.Header (no specific column discrimination). As a final resort, it just takes the workbook default cell style.
For columns, **XLConnect** first checks the availability of a cell style named `<STYLE_NAME_PREFIX>.Column.<COLUMN_NAME>`. If there is no such cell style, it checks for `<STYLE_NAME_PREFIX>.Column.<COLUMN_INDEX>`. If again there is no such cell style, it checks for `<STYLE_NAME_PREFIX>.Column.<COLUMN_DATA_TYPE>` with `<COLUMN_DATA_TYPE>` being the corresponding data type from the set: `{Numeric, String, Boolean, DateTime}`. As a last resort, it would make use of the workbook’s default cell style.

- **XLC$"STYLE_ACTION.DATA_FORMAT_ONLY"**: This style action instructs **XLConnect** to only set the data format for a cell but not to apply any other styling but rather keep the existing one. The data format to apply is determined by the data type of the cell (which is in turn determined by the corresponding R data type). The data format for a specific type can be set via the method `setDataFormatForType`. The default data format is "General" for the data types Numeric, String and Boolean and is "mm/dd/yyyy hh:mm:ss" for the data type DateTime.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

- `workbook`, `cellstyle`, `createCellStyle`, `writeNamedRegion`, `writeWorksheet`, `setStyleNamePrefix`, `setCellValueForType`, `setDataFormatForType`

Examples

```r
# Load workbook (create if not existing)
wbi <- loadWorkbook("styleaction.xlsx", create = TRUE)

# Set style action to 'name prefix'
setStyleAction(wb, XLC$"STYLE_ACTION.NAME_PREFIX")

# Set the name prefix to 'MyPersonalStyle'
setStyleNamePrefix(wb, "MyPersonalStyle")

# We now create a named cell style to be used for the header
# (column names) of a data.frame
headerCellStyle <- createCellStyle(wb,
    name = "MyPersonalStyle.Header")

# Specify the cell style to use a solid foreground color
setFillPattern(headerCellStyle,
    fill = XLC$"FILL.SOLID_FOREGROUND")

# Specify the foreground color to be used
setFillForegroundColor(headerCellStyle,
    color = XLC$"COLOR.LIGHT_CORNFLOWER_BLUE")

# Specify a thick black bottom border
setBorder(headerCellStyle, side = "bottom",
    border = XLC$"BORDER.THICK_BOTTOM")
```
type = XLC$"BORDER.THICK",
color = XLC$"COLOR.BLACK")

We now create a named cell style to be used for
the column named 'wt' (as you will see below, we will
write the built-in data.frame 'mtcars')
wtColumnCellStyle <- createCellStyle(wb,
 name = "MyPersonalStyle.Column.wt")

Specify the cell style to use a solid foreground color
setFillPattern(wtColumnCellStyle,
 fill = XLC$"FILL.SOLID_FOREGROUND")

Specify the foreground color to be used
setFillForegroundColor(wtColumnCellStyle,
 color = XLC$"COLOR.LIGHT_ORANGE")

We now create a named cell style to be used for
the 3rd column in the data.frame
wtColumnCellStyle <- createCellStyle(wb,
 name = "MyPersonalStyle.Column.3")

Specify the cell style to use a solid foreground color
setFillPattern(wtColumnCellStyle,
 fill = XLC$"FILL.SOLID_FOREGROUND")

Specify the foreground color to be used
setFillForegroundColor(wtColumnCellStyle,
 color = XLC$"COLOR.LIME")

Create a sheet named 'mtcars'
createSheet(wb, name = "mtcars")

Create a named region called 'mtcars' referring to
the sheet called 'mtcars'
createName(wb, name = "mtcars", formula = "mtcars!A1")

Write built-in data set 'mtcars' to the above defined named region.
The style action 'name prefix' will be used when writing the data
as defined above.
writeNamedRegion(wb, mtcars, name = "mtcars")

Save workbook (this actually writes the file to disk)
saveWorkbook(wb)
setWrapText-methods

Specifying text wrapping behaviour

Description

Specifies if text should be wrapped in a cell.

Usage

```r
## S4 method for signature 'cellstyle'
setWrapText(object, wrap)
```

Arguments

- `object`: The `cellstyle` to manipulate
- `wrap`: If `wrap = TRUE`, the text is wrapped if it exceeds the width of the cell - otherwise not.

setStyleNamePrefix-methods

Sets the style name prefix for the "name prefix" style action.

Description

Sets the style name prefix for the "name prefix" style action.

Usage

```r
## S4 method for signature 'workbook'
setStyleNamePrefix(object, prefix)
```

Arguments

- `object`: The `workbook` to use
- `prefix`: The name prefix

Details

Sets the prefix for the "name prefix" style action. See the method `setStyleAction` for more information.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `cellstyle`, `setStyleAction`, `createCellStyle`
show-methods

Description

Displays a workbook by printing it. This actually calls the workbook’s print method.

Usage

```r
## S4 method for signature 'workbook'
show(object)
```
Arguments

object The \texttt{workbook} to display

Author(s)

Martin Studer
Mirai Solutions GmbH \url{http://www.mirai-solutions.com}

See Also

\texttt{workbook, print}

Examples

\begin{verbatim}
Load existing demo Excel file 'mtcars.xlsx' from the XLConnect package
wb.mtcars <- loadWorkbook(system.file("demoFiles/mtcars.xlsx", package = "XLConnect"))

Display the wb.mtcars object
wb.mtcars

Alternatively, show can be called explicitly
show(wb.mtcars)
\end{verbatim}

Description

Outputs a \texttt{workbook} summary including the underlying Excel filename, contained worksheets, hidden sheets, very hidden sheets, defined names and the active sheet name.

Usage

\begin{verbatim}
S4 method for signature 'workbook'
summary(object)
\end{verbatim}

Arguments

object The \texttt{workbook} to summarize

Author(s)

Martin Studer
Mirai Solutions GmbH \url{http://www.mirai-solutions.com}

See Also

\texttt{workbook, getSheets, isSheetHidden, isSheetVeryHidden, getDefinedNames, getActiveSheetName}
Examples

```
# Load existing demo Excel file 'mtcars.xlsx' from the XLConnect package
wb.mtcars <- loadWorkbook(system.file("demoFiles/mtcars.xlsx",
  package = "XLConnect"))

# Print a workbook summary
summary(wb.mtcars)
```

swissfranc

Historical Exchange Rates: CHF vs EUR, USD and GBP

Description

This data set provides historical exchange rates (CHF vs EUR, USD, GBP) in the time frame from January 1, 2014 to February 24, 2015. The exchange rates reflect bid prices with a 0% interbank rate.

Usage

```
swissfranc
```

Format

A data.frame with daily exchange rates in the mentioned time frame.

Source

unhideSheet-methods

Unhiding worksheets in a workbook

Description

Unhides the specified worksheets in a workbook.

Usage

```
## S4 method for signature 'workbook,character'
unhideSheet(object,sheet)
## S4 method for signature 'workbook,numeric'
unhideSheet(object,sheet)
```

Arguments

- `object` The workbook to use
- `sheet` The name or index of the sheet to unhide
Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook, hideSheet, isSheetHidden, isSheetVeryHidden, isSheetVisible

Examples

Load workbook (create if not existing)
wb <- loadWorkbook("unhideWorksheet.xlsx", create = TRUE)

Create sheet 'airquality'
createSheet(wb, name = "airquality")

Write the built-in data set airquality to worksheet
'airquality'
writeWorksheet(wb, airquality, sheet = "airquality")

Create sheet 'CO2'
createSheet(wb, name = "CO2")

Write the built-in data set CO2 to worksheet 'CO2'
writeWorksheet(wb, CO2, sheet = "CO2")

Hide sheet 'airquality'
hideSheet(wb, sheet = "airquality")

Unhide sheet 'airquality'
unhideSheet(wb, sheet = "airquality")

unmergeCells-methods Unmerging cells

Description

Unmerges cells in a worksheet.

Usage

S4 method for signature 'workbook,character'
unmergeCells(object, sheet, reference)

S4 method for signature 'workbook,numeric'
unmergeCells(object, sheet, reference)
with.workbook

Arguments

object The workbook to use
sheet The name or index of the sheet on which to unmerge cells
reference A cell range specification (character) in the form 'A1:B8'. Note that the specification must exactly correspond to the range of the merged cells.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook, mergeCells,,idx2cref

Examples

Load workbook (create if not existing)
w <- loadWorkbook("unmergeCells.xlsx", create = TRUE)

Create a worksheet called 'merge'
createSheet(wb, name = "merge")

Merge the cells A1:B8 on the worksheet created above
mergeCells(wb, sheet = "merge", reference = "A1:B8")

Unmerge the cells A1:B8
unmergeCells(wb, sheet = "merge", reference = "A1:B8")

with.workbook Evaluate an R expression in a workbook environment

Description

Evaluate an R expression in an environment constructed from the named regions of an Excel workbook.

Usage

S3 method for class 'workbook'
with(data, expr, ...)

Arguments

data A workbook object, as returned by loadWorkbook.
expr expression to evaluate
... Additional arguments passed to readNamedRegion
Details

This method will read all named regions from the workbook when creating the environment. Names in the workbook will be processed through `make.names` to obtain the variable names.

Changes to the variables representing named regions will not affect the workbook contents and need to be saved explicitly using `writeNamedRegion` and `saveWorkbook`. If the workbook contains names that do not map to R identifiers,

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`getDefinedNames`, `readNamedRegion`,

Examples

```r
# multiregion xlsx file from demoFiles subfolder of package XLConnect
demoExcelFile <- system.file("demoFiles/multiregion.xlsx",
    package = "XLConnect")

# load workbook
wb <- loadWorkbook(demoExcelFile)

# named regions: Calendar, IQ, Iris
print(getDefinedNames(wb))

# named regions as variables
with(wb, {
    print(Calendar)
    summary(IQ)
    summary(Iris)
})
```

workbook-class

Class "workbook"

Description

This is XLConnect’s main entity representing a Microsoft Excel workbook. S4 objects of this class and corresponding methods are used to manipulate the underlying Excel workbook instances.

Objects from the Class

Objects can be created by calls of the form `loadWorkbook(filename, create)`. This is a shortcut form of `new("workbook", filename, create)` with some additional error checking.
Slots

- **filename**: Object of class `character` which represents the filename of the underlying Microsoft Excel workbook.
- **job**: Object of class `jobjRef` (see package `rJava`) which represents a Java object reference that is used in the back-end to manipulate the underlying Excel workbook instance.

These slots should not be accessed directly in user code. Workbook objects should only be manipulated via the corresponding methods.

Note

XLConnect supports both Excel 97-2003 (*.xls) and OOXML (Excel 2007+, *.xlsx) file formats.

A workbook’s underlying Excel file is not saved (or being created in case the file did not exist and `create = TRUE` has been specified) unless the `saveWorkbook` method has been called on the object. This provides more flexibility to the user to decide when changes are saved and also provides better performance in that several changes can be written in one go (normally at the end, rather than after every operation causing the file to be rewritten again completely each time). This is due to the fact that workbooks are manipulated in-memory and are only written to disk with specifically calling `saveWorkbook`.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

References

Wikipedia: Office Open XML

See Also

`loadWorkbook`, `saveWorkbook`

Examples

```r
# Create a new workbook 'myWorkbook.xlsx'
# (assuming the file to not exist already)
wb <- loadWorkbook("myWorkbook.xlsx", create = TRUE)

# Create a worksheet called 'mtcars'
createSheet(wb, name = "mtcars")

# Write built-in dataset 'mtcars' to sheet 'mtcars' created above
writeWorksheet(wb, mtcars, sheet = "mtcars")

# Save workbook - this actually writes the file 'myWorkbook.xlsx' to disk
saveWorkbook(wb)
```
writeNamedRegion-methods

Writing named regions to a workbook

Description

Writes named regions to a workbook.

Usage

```r
## S4 method for signature 'workbook,ANY'
writeNamedRegion(object, data, name, header, rownames)
```

Arguments

- `object` The workbook to use
- `data` Data to write
- `name` Name of the named region to write to
- `header` Specifies if the column names should be written. The default is TRUE.
- `rownames` Name (character) of column to use for the row names of the provided data object. If specified, the row names of the data object (data.frame) will be included as an additional column with the specified name. If `rownames = NULL` (default), no row names will be included. May also be a list in case multiple data objects are written in one call (see below).

Details

Writes data to the named region specified by name. Note that data is assumed to be a data.frame and is coerced to one if this is not already the case. The argument header specifies if the column names should be written. Note also that the arguments are vectorized and as such multiple named regions can be written with one call. In this case data is assumed to be a list of data objects (data.frame's).

Note

Named regions are automatically redefined to the area occupied by the written cells. This guarantees that the complete set of data can be re-read using `readNamedRegion`. Also, this allows the named region just to be defined as the top left cell to be written to. There is no need to know the exact size of the data in advance.

When writing data to Excel, `writeNamedRegion` further applies cell styles to the cells as defined by the workbook's "style action" (see `setStyleAction`).

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com
writeNamedRegionToFile

References

What are named regions/ranges?
http://www.officearticles.com/excel/named_ranges_in_microsoft_excel.htm
How to create named regions/ranges?
http://www.youtube.com/watch?v=iAE9a0uRtpM

See Also

workbook, writeWorksheet, appendNamedRegion, appendWorksheet, readNamedRegion, readWorksheet,
writeNamedRegionToFile

Examples

Load workbook (create if not existing)
wb <- loadWorkbook("writeNamedRegion.xlsx", create = TRUE)

Create a worksheet named 'mtcars'
createSheet(wb, name = "mtcars")

Create a named region called 'mtcars' on the sheet called 'mtcars'
createName(wb, name = "mtcars", formula = "mtcars!A1")

Write built-in data set 'mtcars' to the above defined named region
(using header = TRUE)
writeNamedRegion(wb, mtcars, name = "mtcars")

Save workbook (this actually writes the file to disk)
saveWorkbook(wb)

writeNamedRegionToFile

Writing named regions to an Excel file (wrapper function)

Description

Writes named regions to an Excel file.

Usage

writeNamedRegionToFile(file, data, name, formula=NA, ...,
styleAction = XLC$STYLE_ACTION.XLCONNECT, clearNamedRegions=FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file</td>
<td>The path name of the file to write to</td>
</tr>
<tr>
<td>data</td>
<td>Data to write</td>
</tr>
<tr>
<td>name</td>
<td>Name of the named region to write to</td>
</tr>
</tbody>
</table>
writeWorksheet-methods

Description

Writes data to worksheets of a workbook.
writeWorksheet-methods

Usage

S4 method for signature 'workbook,ANY,character'
writeWorksheet(object, data, sheet, startRow, startCol, header, rownames)

S4 method for signature 'workbook,ANY,numeric'
writeWorksheet(object, data, sheet, startRow, startCol, header, rownames)

Arguments

- **object**
The *workbook* to write to
- **data**
Data to write
- **sheet**
The name or index of the sheet to write to
- **startRow**
Index of the first row to write to. The default is `startRow = 1`.
- **startCol**
Index of the first column to write to. The default is `startCol = 1`.
- **header**
Specifies if the column names should be written. The default is `TRUE`.
- **rownames**
Name (character) of column to use for the row names of the provided data object. If specified, the row names of the data object (data.frame) will be included as an additional column with the specified name. If `rownames = NULL` (default), no row names will be included. May also be a list in case multiple data objects are written in one call (see below).

Details

Writes data to the worksheet specified by `sheet`. `data` is assumed to be a data.frame and is coerced to one if this is not already the case. `startRow` and `startCol` define the top left corner of the data region to be written. Note that the arguments are vectorized and as such multiple data objects (data.frame's) can be written to different worksheets in one call. In this case data is assumed to be a list of data.frames.

Note

When writing data to Excel, `writeWorksheet` further applies cell styles to the cells as defined by the *workbook's* "style action" (see `setStyleAction`).

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`workbook`, `writeNamedRegion`, `appendWorksheet`, `appendNamedRegion`, `readWorksheet`, `readNamedRegion`, `writeWorksheetToFile`
writeWorksheetToFile

Writing data to worksheets in an Excel file (wrapper function)

Description
Writes data to worksheets in an Excel file.

Usage
writeWorksheetToFile(file, data, sheet, ..., styleAction = XLC$STYLE_ACTION.XLCONNECT, clearSheets = FALSE)

Arguments
file The path name of the file to write to.
data Data to write
sheet The name or index of the sheet to write to
... Additional arguments passed to writeWorksheet
styleAction Style action to be used when writing the data - not vectorized! The default is XLC$STYLE_ACTION.XLCONNECT. See setStyleAction for more information.
clearSheets TRUE to clear sheets before writing data.

Author(s)
Thomas Themel
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also
writeWorksheet, writeNamedRegionToFile, readWorksheetFromFile, readNamedRegionFromFile
Examples

```r
# multiregion xlsx file from demofiles subfolder of package XLConnect
demoExcelFile <- system.file("demofiles/multiregion.xlsx",
    package = "XLConnect")

# create a copy of the template
template <- "template ws.xlsx"
file.copy(demoExcelFile, template)

# Write single data.frame to a specified location in an existing file
writeWorksheetToFile(template, data=iris, sheet="FirstSheet",
    startRow=9, startCol = 9)

# create a copy of the template
template <- "template multi ws.xlsx"

# Write a few copies of the data.frame all over a new file
writeWorksheetToFile(template, data = list(i1 = iris, i2 = iris, i3 = iris),
    sheet = c("FirstSheet", "SecondSheet", "FirstSheet"),
    startRow = c(1,101,201), startCol = c(1,11,21))
```

XLC

XLConnect Constants

Description

List structure defining several constants used across `XLConnect`.

Format

The format is:

List of 90

```r
$ ERROR.WARN : chr "WARN"
$ ERROR.STOP : chr "STOP"
$ DATA_TYPE.BOOLEAN : chr "BOOLEAN"
$ DATA_TYPE.NUMERIC : chr "NUMERIC"
$ DATA_TYPE.STRING : chr "STRING"
$ DATA_TYPE.DATETIME : chr "DATETIME"
$ STYLE_ACTION.XLCONNECT : chr "XLCONNECT"
$ STYLE_ACTION.NONE : chr "NONE"
$ STYLE_ACTION.PREDEFINED : chr "PREDEFINED"
$ STYLE_ACTION.NAME_PREFIX : chr "STYLE_NAME_PREFIX"
$ STYLE_ACTION.DATA_FORMAT_ONLY : chr "DATA_FORMAT_ONLY"
$ BORDER.DASHED : num 3
$ BORDER.DASH_DOT : num 9
$ BORDER.DASH_DOT_DOT : num 11
```
<table>
<thead>
<tr>
<th>Border Style</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BORDER_DOTTED</td>
<td>num 7</td>
</tr>
<tr>
<td>BORDER_DOUBLE</td>
<td>num 6</td>
</tr>
<tr>
<td>BORDER_HAIR</td>
<td>num 4</td>
</tr>
<tr>
<td>BORDER_MEDIUM</td>
<td>num 2</td>
</tr>
<tr>
<td>$\text{BORDER_MEDIUM_DASHED}$</td>
<td>num 8</td>
</tr>
<tr>
<td>$\text{BORDER_MEDIUM_DASH_DOT}$</td>
<td>num 10</td>
</tr>
<tr>
<td>$\text{BORDER_MEDIUM_DASH_DOT_DOT}$</td>
<td>num 12</td>
</tr>
<tr>
<td>BORDER_NONE</td>
<td>num 0</td>
</tr>
<tr>
<td>$\text{BORDER_SLANTED_DASH_DOT}$</td>
<td>num 13</td>
</tr>
<tr>
<td>BORDER_THICK</td>
<td>num 5</td>
</tr>
<tr>
<td>BORDER_THIN</td>
<td>num 1</td>
</tr>
<tr>
<td>COLOR_BLACK</td>
<td>num 8</td>
</tr>
<tr>
<td>COLOR_WHITE</td>
<td>num 9</td>
</tr>
<tr>
<td>COLOR_RED</td>
<td>num 10</td>
</tr>
<tr>
<td>$\text{COLOR_BRIGHT_GREEN}$</td>
<td>num 11</td>
</tr>
<tr>
<td>COLOR_BLUE</td>
<td>num 12</td>
</tr>
<tr>
<td>COLOR_YELLOW</td>
<td>num 13</td>
</tr>
<tr>
<td>COLOR_PINK</td>
<td>num 14</td>
</tr>
<tr>
<td>COLOR_TURQUOISE</td>
<td>num 15</td>
</tr>
<tr>
<td>COLOR_DARK_RED</td>
<td>num 16</td>
</tr>
<tr>
<td>COLOR_GREEN</td>
<td>num 17</td>
</tr>
<tr>
<td>COLOR_DARK_BLUE</td>
<td>num 18</td>
</tr>
<tr>
<td>COLOR_DARK_YELLOW</td>
<td>num 19</td>
</tr>
<tr>
<td>COLOR_VIOLET</td>
<td>num 20</td>
</tr>
<tr>
<td>COLOR_TEAL</td>
<td>num 21</td>
</tr>
<tr>
<td>$\text{COLOR_GREY_25_PERCENT}$</td>
<td>num 22</td>
</tr>
<tr>
<td>$\text{COLOR_GREY_50_PERCENT}$</td>
<td>num 23</td>
</tr>
<tr>
<td>$\text{COLOR_CORNFLOWER_BLUE}$</td>
<td>num 24</td>
</tr>
<tr>
<td>COLOR_MAROON</td>
<td>num 25</td>
</tr>
<tr>
<td>$\text{COLOR_LEMON_CHIFFON}$</td>
<td>num 26</td>
</tr>
<tr>
<td>COLOR_ORCHID</td>
<td>num 28</td>
</tr>
<tr>
<td>COLOR_CORAL</td>
<td>num 29</td>
</tr>
<tr>
<td>COLOR_ROYAL_BLUE</td>
<td>num 30</td>
</tr>
<tr>
<td>$\text{COLOR_LIGHT_CORNFLOWER_BLUE}$</td>
<td>num 31</td>
</tr>
<tr>
<td>COLOR_SKY_BLUE</td>
<td>num 40</td>
</tr>
<tr>
<td>$\text{COLOR_LIGHT_TURQUOISE}$</td>
<td>num 41</td>
</tr>
<tr>
<td>COLOR_LIGHT_GREEN</td>
<td>num 42</td>
</tr>
<tr>
<td>$\text{COLOR_LIGHT_YELLOW}$</td>
<td>num 43</td>
</tr>
<tr>
<td>COLOR_PALE_BLUE</td>
<td>num 44</td>
</tr>
<tr>
<td>COLOR_ROSE</td>
<td>num 45</td>
</tr>
<tr>
<td>COLOR_LAVENDER</td>
<td>num 46</td>
</tr>
<tr>
<td>COLOR_TAN</td>
<td>num 47</td>
</tr>
<tr>
<td>COLOR_LIGHT_BLUE</td>
<td>num 48</td>
</tr>
<tr>
<td>COLOR_AQUA</td>
<td>num 49</td>
</tr>
<tr>
<td>COLOR_LIME</td>
<td>num 50</td>
</tr>
<tr>
<td>COLOR_GOLD</td>
<td>num 51</td>
</tr>
<tr>
<td>$\text{COLOR_LIGHT_ORANGE}$</td>
<td>num 52</td>
</tr>
<tr>
<td>COLOR_ORANGE</td>
<td>num 53</td>
</tr>
</tbody>
</table>
$COLOR.BLUE_GREY : num 54
$COLOR.GREY_40_PERCENT : num 55
$COLOR.DARK_TEAL : num 56
$COLOR.SEA_GREEN : num 57
$COLOR.DARK_GREEN : num 58
$COLOR.OLIVE_GREEN : num 59
$COLOR.BROWN : num 60
$COLOR.PLUM : num 61
$COLOR.INDIGO : num 62
$COLOR.GREY_80_PERCENT : num 63
$COLOR.AUTOMATIC : num 64
$FILL.NO_FILL : num 0
$FILL.SOLID_FOREGROUND : num 1
$FILL.FINE_DOTS : num 2
$FILL.ALT_BARS : num 3
$FILL.SPARSE_DOTS : num 4
$FILL.THICK_HORIZ_BANDS : num 5
$FILL.THICK_VERT_BANDS : num 6
$FILL.THICK_BACKWARD_DIAG : num 7
$FILL.THICK_FORWARD_DIAG : num 8
$FILL.BIG_SPOTS : num 9
$FILL.BRICKS : num 10
$FILL.TIN_HORIZ_BANDS : num 11
$FILL.TIN_VERT_BANDS : num 12
$FILL.TIN_BACKWARD_DIAG : num 13
$FILL.TIN_FORWARD_DIAG : num 14
$FILL.SQUARES : num 15
$FILL.DIAMONDS : num 16

Details

The XLC list structure defines several constants used throughout XLConnect. The general convention for enumeration types is to address corresponding constants via XLCS"<ENUM_TYPE>\,<VALUE>" where <ENUM_TYPE> specifies the name of the enumeration and <VALUE> specifies a corresponding enumeration value. An example is XLCS"COLOR_RED" where "COLOR" is the enumeration type and "RED" is the corresponding color enumeration value.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com
Description

Dumps data sets to Excel files by writing each object to a separate worksheet.

Usage

```r
xlcdump(list, ..., file = "dump.xlsx", pos = -1, overwrite = FALSE)
```

Arguments

- `list`: character vector of names of objects inside environment `pos` to dump into an Excel file. Objects will be written using `writeWorksheet` - as such any object will be coerced to a `data.frame`. If missing, the list of objects will be determined via the function `ls` which takes any arguments specified via `...`.

- `...`: Arguments that will be passed to the `ls` function for getting a list of object names in case the `list` argument is missing.

- `file`: Excel file to which objects will be dumped. Can be an existing or a new file. Defaults to "dump.xlsx".

- `pos`: Environment in which to look for objects. Can be specified either as an integer specifying the position in the search list, as a character naming an element in the search list or as an environment. Defaults to `-1` which refers to the current environment.

- `overwrite`: logical specifying if data should be overwritten if objects with the same name have already been dumped to the Excel file.

Details

Each object is written to a separate worksheet named by the name of the object. Objects are written using the `writeWorksheet` method - as such any object will be coerced to `data.frame`.

Value

Named logical vector specifying if objects have been dumped or not. An object may not be dumped because there was an issue with the coercion to a `data.frame` or the object already existed (and `overwrite = FALSE`) in the workbook.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`xlcredump`, `writenamedregion`, `writeWorksheet`, `writenamedregionToFile`, `writeWorksheetToFile`, `xlcedit`
Examples

```r
require(datasets)
xlcDump(c("airquality", "CO2", "iris", "PlantGrowth", "swiss"),
file = "myDump.xlsx", pos = "package:datasets")
xlcRestore(file = "myDump.xlsx", overwrite = TRUE)
```

Description

Provides the capability to edit an object/data.frame in an Excel file editor. After editing, the object is restored in the R session with the corresponding changes.

Usage

```r
xlcEdit(obj, pos = globalenv(), ext = ".xlsx")
```

Arguments

- `obj` Object (data.frame) to edit.
- `pos` Where to look for the object specified by `obj`. See pos argument of `get` for more information.
- `ext` Extension to use for the Excel file being created. Defaults to ".xlsx".

Details

This function uses `xlcDump` and `xlcRestore` to dump objects to and restore objects from Excel files. An OS command is invoked to open the temporary Excel file in the default editor. Changes to the file have to be saved in order for them to take effect in the restored object.

Value

Invisibly returns the value of the `xlcRestore` operation.

Note

This function only works under Windows and MacOS with a corresponding Excel file editor, e.g. MS Excel or LibreOffice. Attempts to use this function under another OS will result in an error being thrown.

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com
See Also

 `xlcDump`, `xlcRestore`, `writeNamedRegion`, `writeWorksheet`, `writeNamedRegionToFile`, `writeWorksheetToFile`

Examples

```r
## Not run:
myObj = mtcars
xlcEdit(myObj)

## End(Not run)
```

xlcFreeMemory
Freeing Java Virtual Machine memory

Description

Frees Java Virtual Machine (JVM) memory.

Usage

```r
xlcFreeMemory(...)  
```

Arguments

...
Further arguments to be passed to R’s garbage collector (`gc`).

Details

This function uses Java’s Runtime class to run the garbage collector. Java memory is freed by first running R’s garbage collector (`gc`) and then Java’s garbage collector. This sequence is important as R’s `gc` may release objects which in turn allows Java’s garbage collector to release some objects.

Note, in general there should be no need to make active use of this with XLConnect. Both R and Java automatically perform garbage collection at times. However, this function might be useful to reclaim memory after removing a large data object that has been written/read to/from Excel.

Author(s)

Martin Studer
Mirai Solutions GmbH
http://www.mirai-solutions.com

See Also

 `xlcMemoryReport`, `gc`

Examples

```r
xlcFreeMemory()
```
xlcMemoryReport

Reporting free Java Virtual Machine memory

Description
Reports the amount of free memory in the Java Virtual Machine (JVM).

Usage
xlcMemoryReport()

Details
This function uses Java’s Runtime class to query the free JVM memory.

Author(s)
Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also
xlcFreeMemory

Examples
xlcMemoryReport()

XLConnect-deprecated

Deprecated functions in package XLConnect

Description
These functions are provided for compatibility with older versions of XLConnect only, and will be
defunct in a later release.

Details
The following functions are deprecated and will be made defunct. Use the replacements as indicated.

- getReferenceCoordinates: getReferenceCoordinatesForName
xlcrestore

Restoring objects from Excel files

Description

Restores objects from Excel files that have been dumped using `xlcdump`.

Usage

```r
xlcrestore(file = "dump.xlsx", pos = -1, overwrite = FALSE)
```

Arguments

- **file**: Excel file from which to restore objects. This is normally a file that has been produced with `xlcdump`. Defaults to "dump.xlsx".
- **pos**: Environment into which to restore objects. Can be specified either as an integer specifying the position in the search list, as a character naming an element in the search list or as an environment. Defaults to -1 which refers to the current environment.
- **overwrite**: logical specifying if data objects should be overwritten if they already exist inside the environment `pos`.

Value

Named logical vector specifying if objects have been restored or not. An object may not be restored because there was an issue with reading the data from the worksheet or the object already existed in the environment `pos` (and `overwrite = FALSE`).

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

`xlcdump`, `readNamedRegion`, `readWorksheet`, `readNamedRegionFromFile`, `readWorksheetFromFile`, `xlcedit`

Examples

```r
require(datasets)
xlcdump(c("airquality", "CO2", "iris", "PlantGrowth", "swiss"),
       file = "myDump.xlsx", pos = "package:datasets")
xlcrestore(file = "myDump.xlsx", overwrite = TRUE)
```
-methods

-methods

Executing workbook methods in object-method(...) form

Description

Allows to execute _workbook_ methods in _workbook-object-method(...)_ form.

Arguments

x
The object (_workbook, cellstyle_) to use

Details

x\text{-method(...)}$ (where x is a _workbook-object_) is equivalent to \text{method(x, ...)}

Note

The _workbook_ -operator allows to call _workbook-methods_ in _workbook-object-method(...)_ form. This form might be considered more convenient or readable for programmers coming from other object-oriented languages such as Java, C#, ...

Author(s)

Martin Studer
Mirai Solutions GmbH http://www.mirai-solutions.com

See Also

workbook

Examples

```
# Load workbook (create if not existing)
wb <- loadWorkbook("dollar.xlsx", create = TRUE)

# Create a worksheet called 'CO2'
wbs\text{-createSheet(name = "CO2")}

# Write built-in data set 'CO2' to the worksheet created above
wb\text{-writeWorksheet(CO2, sheet = "CO2", startRow = 4, startCol = 2)}

# Save workbook
wb\text{-saveWorkbook()}
```
Index

*Topic IO
 appendNamedRegion-methods, 6
 appendWorksheet-methods, 8
 readNamedRegion, 59
 readNamedRegionFromFile, 63
 readTable, 64
 readWorksheet-methods, 66
 readWorksheetFromFile, 71
 with .workbook, 107
 writeNamedRegion-methods, 110
 writeNamedRegionToFile, 111
 writeWorksheet-methods, 112
 writeWorksheetToFile, 114
*Topic classes
 cellstyle-class, 10
 workbook-class, 108
*Topic datasets
 mirai, 57
 swissfranc, 105
 XLC, 115
*Topic error
 onErrorCell-methods, 57
*Topic file
 loadWorkbook, 54
 saveWorkbook-methods, 76
 xlcDump, 117
 xlcRestore, 122
*Topic list
 XLC, 115
*Topic methods
 $-methods, 123
 addImage-methods, 5
 appendNamedRegion-methods, 6
 appendWorksheet-methods, 8
 clearNamedRegion-methods, 12
 clearRange-methods, 13
 clearRangeFromReference-methods, 15
 clearSheet-methods, 16
 cloneSheet-methods, 17
 createCellStyle-methods, 18
 createFreezePane-methods, 20
 createName-methods, 21
 createSheet-methods, 23
 createSplitPane-methods, 24
 existsName-methods, 26
 existsSheet-methods, 27
 extraction-methods, 28
 getActiveSheetIndex-methods, 30
 getActiveSheetName-methods, 31
 getBoundingBox-methods, 31
 getCellFormula-methods, 33
 getCellStyle-methods, 34
 getCellStyleForType-methods, 35
 getDefinedNames-methods, 36
 getForceFormulaRecalculation-methods, 37
 getLastColumn-methods, 38
 getLastRow-methods, 39
 getReferenceCoordinates-methods, 40
 getReferenceCoordinatesForName-methods, 41
 getReferenceCoordinatesForTable-methods, 42
 getReferenceFormula-methods, 43
 getSheetPos-methods, 44
 getSheets-methods, 45
 getTables-methods, 45
 hideSheet-methods, 47
 isSheetHidden-methods, 51
 isSheetVeryHidden-methods, 52
 isSheetVisible-methods, 53
 mergeCells-methods, 56
 print-methods, 58
 readNamedRegion, 59
 readTable, 64
 readWorksheet-methods, 66
removeName-methods, 72
removePane-methods, 73
removeSheet-methods, 74
renameSheet-methods, 75
saveWorkbook-methods, 76
setActiveSheet-methods, 78
setAutoFilter-methods, 79
setBorder-methods, 80
setCellFormula-methods, 81
setCellStyle-methods, 82
setCellStyleForType-methods, 84
setColumnWidth-methods, 86
setDataFormat-methods, 87
setDataFormatForType-methods, 88
setFillBackgroundColor-methods, 90
setFillForegroundColor-methods, 91
setFillPattern-methods, 92
setForceFormulaRecalculation-methods, 93
setMissingValue-methods, 94
setRowHeight-methods, 95
setSheetColor-methods, 96
setSheetPos-methods, 97
setStyleAction-methods, 98
setStyleSheetPrefix-methods, 101
setWrapText-methods, 102
show-methods, 103
summary-methods, 104
unhideSheet-methods, 105
unmergeCells-methods, 106
writeNamedRegion-methods, 110
writeWorksheet-methods, 112
clearRangeFromReference-methods, 15
clearSheet-methods, 16
cloneSheet-methods, 17
col2idx, 18
createCellStyle-methods, 18
createFreezePane-methods, 20
createName-methods, 21
createSheet-methods, 23
createSplitPane-methods, 24
cref2idx, 25
existsName-methods, 26
existsSheet-methods, 27
extraction-methods, 28
extractSheetName, 29
genericSheetIndex-methods, 30
genericSheetName-methods, 31
genericBoundingBox-methods, 31
genericCellFormula-methods, 33
genericCellStyle-methods, 34
genericCellStyleForType-methods, 35
genericDefinedNames-methods, 36
genericForceFormulaRecalculation-methods, 37
genericLastColumn-methods, 38
genericLastRow-methods, 39
genericReferenceCoordinates-methods, 40
genericReferenceCoordinatesForName-methods, 41
genericReferenceCoordinatesForTable-methods, 42
genericReferenceFormula-methods, 43
genericSheetPos-methods, 44
genericSheets-methods, 45
genericTables-methods, 45
hideSheet-methods, 47
dex2aref, 48
dex2col, 49
dex2cref, 50
isSheetHidden-methods, 51
isSheetVeryHidden-methods, 52
isSheetVisible-methods, 53
mergeCells-methods, 56
onErrorCell-methods, 57
removeName-methods, 72
removePane-methods, 73
removeSheet-methods, 74

*Topic misc
 xlcEdit, 119

*Topic package
 XLConnect-package, 4

*Topic print
 print-methods, 58
 show-methods, 103
 summary-methods, 104

*Topic utilities
 $#-methods, 123
 addImage-methods, 5
 aref, 9
 aref2idx, 10
 cellstyle-class, 10
 clearNamedRegion-methods, 12
 clearRange-methods, 13
15 clearRangeFromReference-methods, 15
clearSheet, 13–15
clearSheet (clearSheet-methods), 16
clearSheet, workbook, character-method (clearSheet-methods), 16
clearSheet, workbook, numeric-method (clearSheet-methods), 16
clearSheet-methods, 16
cloneSheet, 23, 27, 75, 76
cloneSheet (cloneSheet-methods), 17
cloneSheet, workbook, character-method (cloneSheet-methods), 17
cloneSheet, workbook, numeric-method (cloneSheet-methods), 17
cloneSheet-methods, 17
col2idx, 9, 10, 18, 25, 49, 50
createCellStyle, 10, 11, 83, 100, 102
createCellStyle (createCellStyle-methods), 18
createCellStyle, workbook, character-method (createCellStyle-methods), 18
createCellStyle, workbook, missing-method (createCellStyle-methods), 18
createCellStyle-methods, 18
createFreezePane, 24, 74
createFreezePane (createFreezePane-methods), 20
createFreezePane, workbook, character-method (createFreezePane-methods), 20
createFreezePane, workbook, numeric-method (createFreezePane-methods), 20
createFreezePane-methods, 20
createName, 6, 26, 37, 40–43, 73
createName (createName-methods), 21
createName, workbook-method (createName-methods), 21
createName-methods, 21
createSheet, 17, 27, 45, 75, 76, 78
createSheet (createSheet-methods), 23
createSheet, workbook-method (createSheet-methods), 23
createSheet-methods, 23
createSplitPane, 21, 74
createSplitPane (createSplitPane-methods), 24
createSplitPane, workbook, character-method (createSplitPane-methods), 24
createSplitPane, workbook, numeric-method (createSplitPane-methods), 24
createSplitPane, workbook, numeric-method (createSplitPane-methods), 24
createSplitPane-methods, 24
cref2idx, 10, 18, 25, 49, 50
data.frame, 60, 65, 68
eexistsName, 22, 37, 40–43, 73
eexistsName (existsName-methods), 26
eexistsName, workbook-method (existsName-methods), 26
eexistsName-methods, 26
eexistsSheet, 17, 23, 75, 76, 78
eexistsSheet (existsSheet-methods), 27
eexistsSheet, workbook-method (existsSheet-methods), 27
eexistsSheet-methods, 27
extraction-methods, 28
extractSheetName, 29
gc, 120
get, 119
getActiveSheetIndex, 31
getActiveSheetIndex (getActiveSheetIndex-methods), 30
getActiveSheetIndex, workbook-method (getActiveSheetIndex-methods), 30
getActiveSheetIndex-methods, 30
ggetActiveSheetName, 30, 104
ggetActiveSheetName (getActiveSheetName-methods), 31
ggetActiveSheetName, workbook-method (getActiveSheetName-methods), 31
ggetActiveSheetName-methods, 31
getBoundingBox (getBoundingBox-methods), 31
getBoundingBox, workbook, character-method (getBoundingBox-methods), 31
getBoundingBox, workbook, numeric-method (getBoundingBox-methods), 31
getBoundingBox-methods, 31
ggetCellFormula, 82
ggetCellFormula (getCellFormula-methods), 33
getCellFormula, workbook, character-method
 (getCellFormula-methods), 33
getCellFormula, workbook, numeric-method
 (getCellFormula-methods), 33
getCellFormula-methods, 33
getCellStyle (getCellStyle-methods), 34
getCellStyle, workbook-method
 (getCellStyle-methods), 34
gCellStyle-methods, 34
gCellStyleForType, 85
gCellStyleForType
 (getCellStyleForType-methods), 35
gCellStyleForType, workbook-method
 (getCellStyleForType-methods), 35
gCellStyleForType-methods, 35
definedNames, 22, 26, 73, 104, 108
definedNames
 (definedNames-methods), 36
definedNames, workbook-method
 (definedNames-methods), 36
definedNames-methods, 36
getForceFormulaRecalculation, 94
getForceFormulaRecalculation
 (getForceFormulaRecalculation-methods), 37
getForceFormulaRecalculation, workbook, character-method
 (getForceFormulaRecalculation-methods), 37
getForceFormulaRecalculation, workbook, numeric-method
 (getForceFormulaRecalculation-methods), 37
getForceFormulaRecalculation-methods, 37
getLastColumn (getLastColumn-methods), 38
getLastColumn, workbook, character-method
 (getLastColumn-methods), 38
gLastColumn, workbook, numeric-method
 (getLastColumn-methods), 38
gLastColumn-methods, 38
getLastRow (getLastRow-methods), 39
getLastRow, workbook, character-method
 (getLastRow-methods), 39
gLastRow, workbook, numeric-method
 (getLastRow-methods), 39
gLastRow-methods, 39
getReferenceCoordinates
 (getReferenceCoordinates-methods), 40
gReferenceCoordinates, workbook-method
 (getReferenceCoordinates-methods), 40
gReferenceCoordinates-methods, 40
gReferenceCoordinatesForName, 40, 42, 121
gReferenceCoordinatesForName
 (getReferenceCoordinatesForName-methods), 41
gReferenceCoordinatesForName, workbook-method
 (getReferenceCoordinatesForName-methods), 41
gReferenceCoordinatesForName-methods, 41
getReferenceCoordinatesForTable, 41
gReferenceCoordinatesForTable
 (getReferenceCoordinatesForTable-methods), 42
gReferenceCoordinatesForTable, workbook, character-method
 (getReferenceCoordinatesForTable-methods), 42
gReferenceCoordinatesForTable, workbook, numeric-method
 (getReferenceCoordinatesForTable-methods), 42
gReferenceFormula, 40–42
gReferenceFormula
 (getReferenceFormula-methods), 43
gReferenceFormula, workbook-method
 (getReferenceFormula-methods), 43
gReferenceFormula-methods, 43
getSheetPos, 45, 98
getSheetPos (getSheetPos-methods), 44
gSheetPos, workbook, character-method
 (getSheetPos-methods), 44
gSheetPos-methods, 44
getSheets, 17, 23, 27, 37, 38, 44, 46, 75, 76, 78, 98, 104
gSheets (getSheets-methods), 45
gSheets, workbook-method
 (getSheets-methods), 45
gSheets-methods, 45
getTables, getTables-methods, 45
getTables, workbook, character-method
(getTables-methods), 45
getTables, workbook, numeric-method
(getTables-methods), 45
getTables-methods, 45
hideSheet, 51, 52, 54, 106
hideSheet, hideSheet-methods, 47
hideSheet, workbook, character-method
(hideSheet-methods), 47
hideSheet, workbook, numeric-method
(hideSheet-methods), 47
hideSheet-methods, 47
idx2ref, 9, 10, 18, 25, 48, 49, 50
idx2col, 9, 10, 18, 25, 49, 49, 50
isSheetHidden, 47, 52, 54, 104, 106
isSheetHidden, isSheetHidden-methods, 51
isSheetHidden, workbook, character-method
(isSheetHidden-methods), 51
isSheetHidden, workbook, numeric-method
(isSheetHidden-methods), 51
isSheetHidden-methods, 51
isSheetVeryHidden, 47, 51, 54, 104, 106
isSheetVeryHidden, isSheetVeryHidden-methods, 52
isSheetVeryHidden, workbook, character-method
(isSheetVeryHidden-methods), 52
isSheetVeryHidden, workbook, numeric-method
(isSheetVeryHidden-methods), 52
isSheetVeryHidden-methods, 52
isSheetVisible, 47, 51, 52, 106
isSheetVisible, isSheetVisible-methods, 53
isSheetVisible, workbook, character-method
(isSheetVisible-methods), 53
isSheetVisible, workbook, numeric-method
(isSheetVisible-methods), 53
isSheetVisible-methods, 53
loadWorkbook, 54, 77, 107–109
makeNames, 108
mergeCells, 107
mergeCells, mergeCells-methods, 56
mergeCells, workbook, character-method
(mergeCells-methods), 56
mergeCells-methods, 56
mergeCells, workbook, numeric-method
(mergeCells-methods), 56
mirror, 57
onErrorCell, 62, 63, 66, 70, 72
onErrorCell, onErrorCell-methods, 57
onErrorCell, workbook-method
(onErrorCell-methods), 57
onErrorCell-methods, 57
print, 103, 104
print, print-methods, 58
print, workbook-method(print-methods), 58
print-methods, 58
readNamedRegion, 7, 8, 22, 26, 28, 37, 57, 59,
63, 66, 70, 73, 107, 108, 110, 111,
113, 122
readNamedRegion, workbook-method
(readNamedRegion), 59
readNamedRegion-methods
(readNamedRegion), 59
readNamedRegionFromFile, 57, 62, 63, 66,
72, 112, 114, 122
readTable, 46, 62, 64, 70
readTable, workbook, character-method
(readTable), 64
readTable, workbook, numeric-method
(readTable), 64
readTable-methods(readTable), 64
readWorksheet, 7, 8, 28, 57, 62, 66, 71, 72,
111, 113, 122
readWorksheet, readWorksheet-methods, 66
readWorksheet, workbook, character-method
(readWorksheet-methods), 66
readWorksheet, workbook, numeric-method
(readWorksheet-methods), 66
readWorksheet-methods, 66
readWorksheetFromFile, 57, 63, 70, 71, 112,
114, 122
removeName, 22, 26, 37, 40–43
removeName, removeName-methods, 72
removeName, workbook-method
(removeName-methods), 72
removeName-methods, 72
removePane, 21, 24
removePane (removePane-methods), 73
removePane, workbook, character-method (removePane-methods), 73
removePane, workbook, numeric-method (removePane-methods), 73
removePane-methods, 73
removeSheet, 17, 23, 27, 45, 76, 78
removeSheet (removeSheet-methods), 74
removeSheet, workbook, character-method (removeSheet-methods), 74
removeSheet, workbook, numeric-method (removeSheet-methods), 74
removeSheet-methods, 74
renameSheet, 17, 23, 27, 45, 75, 78
renameSheet (renameSheet-methods), 75
renameSheet, workbook, character-method (renameSheet-methods), 75
renameSheet, workbook, numeric-method (renameSheet-methods), 75
renameSheet-methods, 75
saveWorkbook, 55, 108, 109
saveWorkbook (saveWorkbook-methods), 76
saveWorkbook, workbook, character-method (saveWorkbook-methods), 76
saveWorkbook, workbook, missing-method (saveWorkbook-methods), 76
saveWorkbook-methods, 76
setActiveSheet, 75, 76
setActiveSheet (setActiveSheet-methods), 78
setActiveSheet, workbook, character-method (setActiveSheet-methods), 78
setActiveSheet, workbook, numeric-method (setActiveSheet-methods), 78
setActiveSheet-methods, 78
setAutoFilter (setAutoFilter-methods), 79
setAutoFilter, workbook, character-method (setAutoFilter-methods), 79
setAutoFilter, workbook, numeric-method (setAutoFilter-methods), 79
setAutoFilter-methods, 79
setBorder, 19, 34, 83
setBorder (setBorder-methods), 80
setBorder, cellstyle-method (setBorder-methods), 80
setBorder-methods, 80
setCellFormula, 34
setCellFormula (setCellFormula-methods), 81
setCellFormula, workbook, character-method (setCellFormula-methods), 81
setCellFormula, workbook, numeric-method (setCellFormula-methods), 81
setCellFormula-methods, 81
setCellStyle, 11, 19, 34, 80, 87, 90–92, 103
setCellStyle (setCellStyle-methods), 82
setCellStyle, workbook, character, missing-method (setCellStyle-methods), 82
setCellStyle, workbook, missing, character-method (setCellStyle-methods), 82
setCellStyle, workbook, missing, numeric-method (setCellStyle-methods), 82
setCellStyle-methods, 82
setCellStyleForType, 35, 99, 100
setCellStyleForType (setCellStyleForType-methods), 84
setCellStyleForType, workbook-method (setCellStyleForType-methods), 84
setCellStyleForType-methods, 84
setColumnWidth, 96
setColumnWidth (setColumnWidth-methods), 86
setColumnWidth, workbook, character-method (setColumnWidth-methods), 86
setColumnWidth, workbook, numeric-method (setColumnWidth-methods), 86
setColumnWidth-methods, 86
setDataFormat, 19, 34, 83
setDataFormat (setDataFormat-methods), 87
setDataFormat, cellstyle-method (setDataFormat-methods), 87
setDataFormat-methods, 87
setDataFormatForType, 100
setDataFormatForType (setDataFormatForType-methods), 88
setDataFormatForType, workbook-method (setDataFormatForType-methods), 88
setDataFormatForType-methods, 88
setFillBackgroundColor, 19, 34, 83
setFillBackgroundColor
INDEX

(setFillBackgroundColor-methods), 90

setFillBackgroundColor, cellstyle, numeric-method
(setFillBackgroundColor-methods), 90

setFillBackgroundColor-methods, 90

setFillForegroundColor, 19, 34, 83

setFillForegroundColor
(setFillForegroundColor-methods), 91

setFillForegroundColor, cellstyle, numeric-method
(setFillForegroundColor-methods), 91

setFillForegroundColor-methods, 91

setFillForegroundColor
(setFillForegroundColor-methods), 91

setFillForegroundColor
(setFillForegroundColor-methods), 91

setFillPattern, 19, 34, 83

setFillPattern
(setFillPattern-methods), 92

setFillPattern, cellstyle-method
(setFillPattern-methods), 92

setFillPattern-methods, 92

setForceFormulaRecalculation, 38

setForceFormulaRecalculation
(setForceFormulaRecalculation-methods), 93

setForceFormulaRecalculation, workbook, character-method
(setForceFormulaRecalculation-methods), 93

setForceFormulaRecalculation, workbook, numeric-method
(setForceFormulaRecalculation-methods), 93

setForceFormulaRecalculation-methods, 93

setMissingValue, 61, 65, 68, 69

setMissingValue
(setMissingValue-methods), 94

setMissingValue, workbook, ANY-method
(setMissingValue-methods), 94

setMissingValue, workbook-method
(setMissingValue-methods), 94

setMissingValue-methods, 94

setRowHeight, 86

setRowHeight
(setRowHeight-methods), 95

setRowHeight, workbook, character-method
(setRowHeight-methods), 95

setRowHeight, workbook, numeric-method
(setRowHeight-methods), 95

setRowHeight-methods, 95

setSheetColor
(setSheetColor-methods), 96

setSheetColor, workbook, character-method
(setSheetColor-methods), 96

setSheetColor, workbook, numeric-method
(setSheetColor-methods), 96

setSheetColor-methods, 96

setSheetPos, 44, 45

setSheetPos
(setSheetPos-methods), 97

setSheetPos, workbook, character, missing-method
(setSheetPos-methods), 97

setSheetPos-methods, 97

setStyleAction, 11, 19, 34, 35, 80, 85, 87, 89–92, 102, 103, 110, 112–114

setStyleAction
(setStyleAction-methods), 98

setStyleAction, workbook-method
(setStyleAction-methods), 98

setStyleAction-methods, 98

setStyleNamePrefix, 19, 34, 99, 100

setStyleNamePrefix
(setStyleNamePrefix-methods), 101

setStyleNamePrefix, workbook-method
(setStyleNamePrefix-methods), 101

setStyleNamePrefix-methods, 101

setWrapText, 19, 34, 83

setWrapText
(setWrapText-methods), 102

setWrapText, cellstyle-method
(setWrapText-methods), 102

setWrapText-methods, 102

show
(show-methods), 103

show, workbook-method
(show-methods), 103

strftime, 60, 65, 68

summary
(summary-methods), 104

summary, workbook-method
(summary-methods), 104

summary-methods, 104

swissfranc, 105

unhideSheet, 47, 51, 52, 54

unhideSheet
(unhideSheet-methods), 105

unhideSheet, workbook, character-method
(unhideSheet-methods), 105

unhideSheet, workbook, numeric-method
(unhideSheet-methods), 105
unhideSheet-methods, 105
unmergeCells, 56
unmergeCells (unmergeCells-methods), 106
unmergeCells, workbook, character-method (unmergeCells-methods), 106
unmergeCells, workbook, numeric-method (unmergeCells-methods), 106
unmergeCells-methods, 106

with .workbook, 107
workbook-class, 108
writeNamedRegion, 7, 8, 22, 26, 28, 37, 62, 66, 70, 73, 94, 95, 99, 100, 108, 112, 113, 118, 120
writeNamedRegion
 (writeNamedRegion-methods), 110
writeNamedRegion, workbook, ANY-method
 (writeNamedRegion-methods), 110
writeNamedRegion, workbook-method
 (writeNamedRegion-methods), 110
writeNamedRegion-methods, 110
writeNamedRegionTofile, 63, 72, 111, 111, 114, 118, 120
writeWorksheet, 7, 8, 28, 62, 66, 70, 94, 95, 99, 100, 111, 114, 118, 120
writeWorksheet
 (writeWorksheet-methods), 112
writeWorksheet, workbook, ANY, character-method
 (writeWorksheet-methods), 112
writeWorksheet, workbook, ANY, numeric-method
 (writeWorksheet-methods), 112
writeWorksheet-methods, 112
writeWorksheetToFile, 63, 72, 112, 113, 114, 118, 120

XLC, 35, 57, 59, 64, 67, 80, 85, 89–92, 97, 115
xlcDump, 117, 119, 120, 122
xlcEdit, 118, 119, 122
xlcFreeMemory, 120, 121
xlcMemoryReport, 120, 121
XLConnect (XLConnect-package), 4
XLConnect-deprecated, 121
XLConnect-package, 4
xlcRestore, 118–120, 122