Package ‘bigdata’

Type Package
Title Big Data Analytics
Version 0.1
Date 2011-02-12
Author Han Liu, Tuo Zhao
Maintainer Han Liu <hanliu@cs.jhu.edu>
Depends glmnet, Matrix, lattice,
Description The big data package is a collection of scalable methods for large-scale data analysis.
License GPL-2
Repository CRAN
Date/Publication 2012-04-06 15:55:53
NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bigdata-package</td>
<td>1</td>
</tr>
<tr>
<td>lasso.stars</td>
<td>2</td>
</tr>
<tr>
<td>plot.stars</td>
<td>4</td>
</tr>
<tr>
<td>print.stars</td>
<td>5</td>
</tr>
</tbody>
</table>

Index 6

bigdata-package Big Data Analytics

Description

a collection of scalable methods for large-scale data analysis.

Details
Author(s)
Han Liu, Tuo Zhao
Maintainers: Han Liu <hanliu@cs.jhu.edu>

References

See Also
lasso.stars

Description
Implements the Stability Approach to Regularization Selection (StARS) for Lasso

Usage
lasso.stars(x, y, rep.num = 20, lambda = NULL, nlambda = 100, lambda.min.ratio = 0.001, stars.thresh = 0.1, sample.ratio = NULL, alpha = 1, verbose = TRUE)

Arguments
x The n by d data matrix representing n observations in d dimensions
y The n-dimensional response vector
rep.num The number of subsampling for StARS. The default value is 20.
lasso.stars

lambda A sequence of decreasing positive numbers to control regularization. Typical usage is to leave the input `lambda = NULL` and have the program compute its own `lambda` sequence based on `nlambda` and `lambda.min.ratio`. Users can also specify a sequence to override this. Use with care - it is better to supply a decreasing sequence values than a single (small) value.

nlambda The number of regularization parameters. The default value is 100.

lambda.min.ratio The smallest value for `lambda`, as a fraction of the upper bound (`MAX`) of the regularization parameter which makes all estimates equal to 0. The program can automatically generate `lambda` as a sequence of length `nlambda` starting from `MAX` to `lambda.min.ratio*MAX` in log scale. The default value is 0.001.

stars.thresh The threshold of the variability in StARS. The default value is 0.1. The alternative value is 0.05. Only applicable when `criterion = "stars"

sample.ratio The subsampling ratio. The default value is `10*sqrt(n)/n` when `n>100` and `0.8` when `n<=100`, where `n` is the sample size.

alpha The tuning parameter for the elastic-net regression. The default value is 1 (lasso).

verbose If `verbose = FALSE`, tracing information printing is disabled. The default value is TRUE.

Details

StARS selects the optimal regularization parameter based on the variability of the solution path. It chooses the least sparse graph among all solutions with the same variability. An alternative threshold 0.05 is chosen under the assumption that the model is correctly specified. In applications, the model is usually an approximation of the true model, 0.1 is a safer choice. The implementation is based on the popular package "glmnet".

Value

An object with S3 class "stars" is returned:

- `path` The solution path of regression coefficients (in an `d` by `nlambda` matrix)
- `lambda` The regularization parameters used in Lasso
- `opt.index` The index of the optimal regularization parameter.
- `opt.beta` The optimal regression coefficients.
- `opt.lambda` The optimal regularization parameter.
- `variability` The variability along the solution path.

Note

This function can only work under the setting when `d>1`

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tourzhao@andrew.cmu.edu>; Han Liu <hanliu@cs.jhu.edu>
References

See Also

bigdata-package

Examples

```r
# generate data
x = matrix(rnorm(U0*X0),50,50)
beta = c(SLRL1NULrep(0,77))
y = rnorm(50) + x*%beta

# StARS for Lasso
z1 = lasso.stars(x,y)
summary(z1)
plot(z1)

# StARS for Lasso
z2 = lasso.stars(x,y, stars.thresh = 0.05)
summary(z2)
plot(z2)

# StARS for Lasso
z3 = lasso.stars(x,y, rep.num = 50)
summary(z3)
plot(z3)
```

plot.stars

Plot function for S3 class "stars"

Description

Visualize the solution path and plot the optimal solution by model selection

Usage

```r
## S3 method for class 'stars'
plot(x, ...)
```

Arguments

- `x`: An object with S3 class "stars"
- `...`: System reserved (No specific usage)
Print function for S3 class "stars"

Print the information about the solution path length and the degree of freedom’s along the solution path.

Usage

```r
## S3 method for class 'stars'
print(x, ...)
```

Arguments

- `x` An object with S3 class "stars"
- `...` System reserved (No specific usage)

See Also

- `lasso.stars`
Index

bigdata-package, 1
lasso.stars, 2, 2, 5
plot.stars, 4
print.stars, 5