Package ‘cg’

February 19, 2015

Type Package
Title The cg package to compare groups
Version 1.0-2
Date 2014-12-31
Author Bill Pikounis [aut, cre, cph]. John Oleynick [aut], Eva Ye [ctb]
Maintainer Bill Pikounis <cg@billpikounis.net>
Description cg is comprehensive data analysis software, and stands for "compare groups." Its genesis and evolution are driven by common needs to compare administrations, conditions, etc. in medicine research & development. The current version provides comparisons of unpaired samples, i.e. a linear model with one factor of at least two levels. It also provides comparisons of two paired samples. Good data graphs, modern statistical methods, and useful displays of results are emphasized.
License GPL-2 | GPL-3
LazyLoad yes
LazyData yes
Depends R (>= 3.0.2), Hmisc (>= 3.14-0)
Imports VGAM (>= 0.9-3), methods, grid, MASS, lattice, survival, multcomp, nlme
NeedsCompilation no
Repository CRAN
Date/Publication 2014-12-31 18:12:13

R topics documented:

cg-package .. 3
anorexiaFT ... 6
boxplot.cgOneFactorData 7
canine ... 9
canine.listfmt .. 10
cgInternalClasses .. 12
cgInternalUtilities ... 12
R topics documented:
cgLIneColors .. 13
cgValidity ... 14
comparisons .. 14
comparisonsGraph .. 18
comparisonsgraph .. 20
comparisonsGraph.cgOneFactorComparisonsTable 22
comparisonsGraph.cgPairedDifferenceComparisonsTable 25
comparisonsTable ... 27
comparisonsTable.cgOneFactorFit 29
comparisonsTable.cgPairedDifferenceFit 33
correlationTable ... 37
correlationTable.cgPairedDifferenceData 38
descriptiveTable .. 40
descriptiveTable.cgOneFactorData 41
descriptiveTable.cgPairedDifferenceData 44
diffGraph ... 46
diffGraph.cgPairedDifferenceData 47
downweightedTable ... 49
downweightedTable.cgOneFactorFit 51
downweightedTable.cgPairedDifferenceFit 53
errorBarGraph .. 55
errorBargraph.cgOneFactorFit 59
fit .. 62
fit.cgOneFactorData .. 63
fit.cgPairedDifferenceData 66
globalTest .. 66
globalTest.cgOneFactorFit 69
gmcsfcens .. 71
gmcsfcens.listfmt ... 72
grpSummaryTable .. 75
grpSummaryTable.cgOneFactorFit 77
kmGraph .. 80
kmGraph.cgOneFactorData 81
pointGraph .. 83
pointGraph.cgOneFactorData 85
prepare .. 87
prepareCGOneFactorData 88
prepareCGPairedDifferenceData 93
print.cgOneFactorComparisonsTable 96
print.cgOneFactorDescriptiveTable 98
print.cgOneFactorDownweightedTable 100
print.cgOneFactorFit ... 101
print.cgOneFactorGlobalTest 103
print.cgOneFactorGrpSummaryTable 104
print.cgOneFactorSampleSizeTable 106
print.cgPairedDifferenceComparisonsTable 107
print.cgPairedDifferenceCorrelationTable 109
print.cgPairedDifferenceDescriptiveTable .. 111
print.cgPairedDifferenceDownweightedTable 112
print.cgPairedDifferenceFit .. 114
print.cgPairedDifferenceSampleSizeTable 115
print.cgPairedDifferenceVarianceTable ... 117
profileGraph ... 119
profileGraph.cgPairedDifferenceData .. 120
qqGraph .. 122
qqGraph.cgPairedDifferenceFit .. 125
samplesizeGraph .. 128
samplesizeGraph.cgOneFactorSampleSizeTable 129
samplesizeGraph.cgPairedDifferenceSampleSizeTable 132
samplesizeTable .. 134
samplesizeTable.cgOneFactorFit .. 136
samplesizeTable.cgPairedDifferenceFit ... 139
show.cgOneFactorComparisonsTable ... 142
show.cgOneFactorDescriptiveTable .. 143
show.cgOneFactorDownweightedTable .. 144
show.cgOneFactorGlobalTest ... 145
show.cgOneFactorGrpSummaryTable 146
show.cgOneFactorSampleSizeTable ... 147
show.cgPairedDifferenceComparisonsTable 148
show.cgPairedDifferenceCorrelationTable 149
show.cgPairedDifferenceDescriptiveTable 151
show.cgPairedDifferenceDownweightedTable 152
show.cgPairedDifferenceSampleSizeTable 153
show.cgPairedDifferenceVarianceTable .. 154
showObj .. 155
showObj.cgOneFactorFit .. 156
showObj.cgPairedDifferenceFit .. 157
summary.cgOneFactorFit .. 159
summary.cgPairedDifferenceFit .. 160
varianceGraph ... 162
varianceGraph.cgOneFactorFit ... 163
varianceTable ... 166
varianceTable.cgPairedDifferenceFit .. 167

Index ... 170
Description

cg is comprehensive data analysis software, and stands for "compare groups." Its genesis and evolution are driven by common needs to compare administrations, conditions, etc. in medicine research & development. The current version provides comparisons of unpaired samples, i.e. a linear model with one factor of at least two levels. It also provides comparisons of two paired samples. Good data graphs, modern statistical methods, and useful displays of results are emphasized.

Details

Package: cg
Type: Package
Version: 1.0-2
Date: 2014-12-31
License: GPL (>= 2)
LazyLoad: yes
LazyData: yes
Depends: R (>= 3.0.2), Hmisc (>= 3.14-0) Imports: VGAM (> 0.9-3), methods, grid, MASS, lattice, survival, multcomp, nlme

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]
Maintainer: Bill Pikounis <cg@billpikounis.net>

References

Examples

One Factor data

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")

Exploratory methods
pointGraph(canine.data)
boxplot(canine.data)
descriptiveTable(canine.data)

Fits and Comparisons
canine.fit <- fit(canine.data)
canine.comps0 <- comparisonsTable(canine.fit)
errorBarGraph(canine.fit)

canine.comps1 <- comparisonsTable(canine.fit, mcadjust=TRUE,
 type="allgroupstocontrol", refgrp="CC")

comparisonsGraph(canine.comps1)

grpSummaryTable(canine.fit)

Diagnostics

varianceGraph(canine.fit)

qqGraph(canine.fit)

downweightedTable(canine.fit, cutoff=0.95)

Sample Size calculations

canine.samplesize <- samplesizeTable(canine.fit, direction="increasing",
 mmdvec=c(10, 25, 50, 75, 100))

samplesizeGraph(canine.samplesize)

Censored Data Set

data(gmcsfcens)

gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
 analysisname="cytokine",
 endptname="GM-CSF (pg/ml)",
 logscale=TRUE)

pointGraph(gmcsfcens.data)

boxplot(gmcsfcens.data)

descriptiveTable(gmcsfcens.data)

gmcsfcens.fit <- fit(gmcsfcens.data, type="aft")

Paired Samples

data(anorexiaFT)

anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
 analysisname="Anorexia FT",
 endptname="Weight",
 endptunits="lbs",
 expunitname="Patient",
 digits=1,
 logscale=TRUE)

Exploratory methods

descriptiveTable(anorexiaFT.data)

profileGraph(anorexiaFT.data)
anorexiaFT

A data frame used to illustrate the cg package. It has a Paired Samples / Paired Difference layout.

Usage

data(anorexiaFT)

Format

A 17-by-2 data frame from an study of young female anorexia patients. It is a subset of the anorexia data frame included in the MASS package. Out of the three groups there, only the factor level FT group makes up the anorexiaFT data frame. The endpoint is Weight in pounds (lbs), FT represents "Family Therapy" treatment, and the paired levels are

PreWt Patient weight before treatment
PostWt Patient weight after treatment

See anorexia in the MASS package for additional description.

Details

The anorexiaFT data set that comes with the cg package is in groupcolumns format for the prepareCGPairedDifferenceData call. Each column represents a group, and each row represents an individual patient, or experimental unit. Each observation in a row that spans the two group columns are paired individual response or outcome values.

The purpose of the study was to evaluate effects of multiple treatments on weight as a marker for anorexia, and to compare their relative effectiveness.

See anorexia in the MASS package for references and more details.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.
See Also

anorexia, prepareCGPairedDifferenceData

Examples

data(anorexiaFT)
str(anorexiaFT)

boxplot.cgOneFactorData

Box Plot Graph of Groups from a cgOneFactorData object

Description

Create graph of boxplots of groups in a cgOneFactorData object.

Usage

S4 method for signature 'cgOneFactorData'
boxplot(x, ...)

Arguments

x A cgOneFactorData object.

... Additional arguments, both optional. Two are currently valid:

logscale A logical value, indicating whether or not the boxplot graph should be plotted on the logarithmic scale. If logscale is not specified, its value is taken from the cgOneFactorData object, which prepareCGOneFactorData sets from its logscale argument.

ticklabels A list of two components:

mod Can be either of these two values,

"replace" Before graphing the data, remove any automatically generated tickmarks for the y-axis, and create the tickmarks specified in the marks component (see below).

"add" Before graphing the data, add tickmarks specified in the marks component to the automatically generated ones.

marks A vector of tickmarks to be placed on the y-axis. Any numeric representations will be coerced to character.

Details

For uncensored data, the boxplot for each group produced is a standard boxplot, similar to that produced by graphics::boxplot.default, but with the median shown as a "+" and the mean shown as a "o". A warning is added to the plot if any of the groups or all of the groups have 5 or fewer observations (in which case a plot from pointGraph.cgOneFactorData might be more suitable).
For censored data, Kaplan-Meier estimates are used for the quantiles, as proposed by Gentleman and Crowley (1991). The\texttt{survival::survfit} conventions are followed for interpolation of these quantiles. Extreme values that are censored are drawn as open arrow heads rather than open circles. Left-censored values are shown as a shallow "V", which is actually just a rotated downward ">" sign. Similarly, right-censored values are shown as a deeper "^" sign, which is a actually just a rotated upward ">
" sign. Individual points are jittered, and open circles are used for complete observations to alleviate potential overlap and the danger of representing multiple points as a single point. Individual censored values are similarly jittered. With enough censored data observations in a group, certain quantiles may not be estimable, and thus a complete box would not appear.

If \texttt{logscale=TRUE}, the tick marks for the y-axis on the left side of the plot show original values, while the ticks mark for the y-axis on the right side of the graph show base 10 log values.

Tick marks are attempted to be chosen wisely. For log-scaled axes in particular, leading digits of 2, 5, and 10 for values are included if possible. Since the algorithm is empirical, the \texttt{ticklabels} argument is available for further refinement or complete replacement of tickmarks.

The heading for the graph is taken from the \texttt{cgOneFactorData} object, which \texttt{prepareCGOneFactorData} sets from its \texttt{analysisname} argument. The label for the y-axis is taken from the \texttt{cgOneFactorData} object, which \texttt{prepareCGOneFactorData} sets from its \texttt{endptname} argument. The number of decimal places printed in the ticks on the y-axis is taken from the \texttt{cgOneFactorData} object, which \texttt{prepareCGOneFactorData} sets from its \texttt{digits} argument.

The minimum and maximum values from the range of the data are respectively labeled in the bottom and top left corners of the graph region.

If group labels along the x-axis seem to overlap in the standard horizontal form, they will be rotated 45 degrees.

\textbf{Value}

\texttt{boxplot.cgOneFactorData} returns an invisible \texttt{NULL}. The main purpose is the side effect of graphing to the current device.

\textbf{Note}

Contact \texttt{<cg@billpikounis.net>} for bug reports, questions, concerns, and comments.

\textbf{Author(s)}

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

\textbf{References}

\textbf{Examples}

\begin{verbatim}
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",

\end{verbatim}
Canine Data Set in the cg package

Description

A data frame used to illustrate the cg package. It has a One Factor / One-Way / Unpaired Samples layout.

Usage

data(canine)

Format

A 5-by-5 data frame with 5 numeric observations from an experiment on the following 5 groups of beagle dogs.

AE castration plus estradiol and androstanediol
E1 castration plus low dose estradiol
E2 castration plus high dose estradiol
CC castration alone
NC no castration (normal controls)

Details

The canine data set that comes with the cg package is in groupcolumns format for the prepareCGOneFactorData call. Each column represents a group, and the observations in that group’s column are the individual response or outcome values.

The 5 groups are regarded as levels of one factor in the prepareCGOneFactorData, fit, and other methods in the cg package.

An alternative format of this data set is contained in canine.listfmt. See that help file for details, including how it would be read and prepared by cg.
The purpose of this experiment was to evaluate the effect of a physiological dose of estradiol on prostate growth in dogs using ultrasound. See the reference below for details. Comparisons amongst all five groups are of interest.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

References

See Also
canine.listfmt, prepareCGOneFactorData

Examples

data(canine)
str(canine)

Description

A data frame used to illustrate the cg package. It has a One Factor / One-Way / Unpaired Samples layout.

Usage

data(canine.listfmt)

Format

A 25-by-2 data frame with 5 numeric observations from an experiment on each of the following 5 groups of beagle dogs.

AE castration plus estradiol and androstanediol
E1 castration plus low dose estradiol
E2 castration plus high dose estradiol
CC castration alone
NC no castration (normal controls)

The above 5 items are the levels of the first column's factor, named grp. The second column size contains the numeric observations.
canine.listfmt

Details

The `canine.listfmt` data set that comes with the `cg` package is in listed format for the `prepareCGOneFactorData` call.

The 5 groups are regarded as levels of one factor in the `prepareCGOneFactorData`, `fit`, and other methods in the `cg` package.

`canine.listfmt` is an alternative format of the `canine` data set. See that help file for details. Once the data set is prepared into a `CGOneFactorData` object, all the subsequent methods work on the object in the same way.

The purpose of this experiment was to evaluate the effect of a physiological dose of estradiol on prostate growth in dogs using ultrasound. See the reference below for details. Comparisons amongst all five groups are of interest.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

References

See Also

`canine`, `prepareCGOneFactorData`

Examples

data(canine.listfmt)
str(canine.listfmt)

```r
## Analogous to prepareCGOneFactorData call on canine data frame format,
## subsequent methods will work for canine.listfmt.data:

canine.listfmt.data <- prepareCGOneFactorData(canine.listfmt, format="listed",
                                           analysisname="Canine",
                                           endptname="Prostate Volume",
                                           endptunits=expression(plain(cm)^3),
                                           digits=1, logscale=TRUE, refgrp="CC")

## as they do on canine.data:

canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
                                           analysisname="Canine",
                                           endptname="Prostate Volume",
                                           endptunits=expression(plain(cm)^3),
                                           digits=1, logscale=TRUE, refgrp="CC")
```
cgInternalClasses cg package Internal Virtual Classes

Description

cg package Internal Virtual Classes designed for polymorphic slots

Details

The virtual classes
characterOrExpression
characterOrNULL
dataframeMatrixOrNULL
dataframeOrNULL
numericOrNULL
olsfit
rrfit
aftfit
uvfit
are used internally by the cg package, and designed as polymorphic slots.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

cgInternalUtilities cg package Internal Utilities

Description

 cg package Internal Utility functions and objects not intended for user-level calls
cgLineColors

Details
The functions

stnderr geoMean pctToRatio makeZeroScore unwind unwrap graphStampCG setupAxisTicks setupLog10AxisTicks tryAgain seeHelpFile paragraphWrap cgMessage factorInSeq setupGrpNameTicks xTicksCex yTicksCex rmTicks minmaxTicks plotGrpNameTicks boxplotStamp errorBarGraphStamp comparisonsGraphStamp errorBarGraphApproximateStamp trimWhiteSpace chopZeroes fmtRatioToPercent fmtDifference fmtRatio fmtPercent fmtPvalue cgDevice contrastMatrix blockDiag rangeExtend getNumDigits makeCensored multcompInform multcompDone isAllEqual makeEndptLabel catCharExpr residualgrptrend.helper fround fround.charcens chop.matrix stripmiss makeTickMarks scaleVar makeContrastVec cg.largest.empty qminmin unpaste grpsummary samplesize graph boxplot censored data descriptive.censored data pairwise.comps.matrix

are used internally by the cg package. See source code for details.
The blockDiag function is adapted from a Ben Bolker function contribution on R-help in 2002.
The factorInSeq function is exported since it may be useful for a user. It is a simple wrapper around factor with the order of its levels determined by first occurrence of each level in its x vector argument.

Note
Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

cgLineColors Color Choice order for Graph Lines

Description
A vector named cgLineColors that assigns colors to lines for graphing methods in the cg package.

Usage
cgLineColors

Format
A vector containing ten values in this order: black blue green red orange brown yellow darkblue darkgreen darkgray

Details
This is a package internal convenience, and not intended for use or modification by the end user.
If more than ten values are needed then recycling will occur.
comparisons

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

cgValidity cg package Validity Checks

Description

cg package Internal Validity functions not intended for user-level calls. These are used on input arguments for methods and functions.

Details

validAlpha validPower validDataFormat validBoolean validCharacter validNumeric validNumericOrCensored validList validAtomicVec validArgMatch validDotsArg validDotsArgs getDotsArgName parsePartialName reportInvalidArg validEqualLength validArgMatch validArgDigits validArgModel validCGOneFacGroupColDfr validCGOneFacListedDfr validCensor validZeroScore validAddConstant validAft validFitType validErrorDf validComparisonType validEstimates validGrpNames validN validCutoffWt validDenDf

are used internally by the cg package.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

comparisons Create a table of comparisons amongst groups

Description

Create a table of comparisons based on group estimates and variance-covariance matrix. Pairwise or custom specified contrasts are estimated and tested.
comparisons

Usage
comparisons(estimates, varcovmatrix, errordf = Inf, endptscale,
mcadjust = FALSE, alpha = 0.05, type = "pairwisereflect",
contrastmatrix = NULL, n, offset = NULL, cnames = "derive",
analysisname = "", endptname = "", digits = NULL, addpct = FALSE,
display = "print")

Arguments

estimates A named vector of estimates. Each estimate element is a measure of the center of the group. The name of each group must be present in the names attribute of the vector.

varcovmatrix The estimated variance-covariance matrix associated with the estimates. Must have the same number of columns and rows as the length of the estimates vector.

errordf Can be one of three types of values:

Inf The default, and will just use standard Gaussian (normal) distribution quantile for the critical points in each comparison;
numeric A finite positive number that will be used for the degrees of freedom for the t-distribution quantile;
"approx" Will try to apply a Satterthwaite approximation based on the variance-covariance matrix and n to estimate the degrees of freedom for each comparison. The variance-covariance matrix will need to be diagonal. Only will be accepted when mcadjust=FALSE.

endptscale Must be specified as "log" or "original". If "log" then the estimates vector is assumed to be in the log scale, and calculations will transform it to the original scale for the generated table.

mcadjust Do a multiple comparisons adjustment, based on the simultaneous inference capabilities of the multcomp package. See Details below. The default value is FALSE. If mcadjust=TRUE is specified, there will be a delay, usually just for a few seconds, due to computing time of the critical point in order to conduct the adjusted comparisons.

alpha Significance level, by default set to 0.05 to correspond to 95% confidence.

type Can be one of four values:

"pairwisereflect" The default value, it calculates and lists all possible pairwise comparison permutations, as each pair ordering is included. In other words, Groups A vs. B and B vs. A will be included.

"pairwise" Calculates and lists all possible pairwise comparison combinations. Once a pair such as Groups A vs. B is specified, then the reflective B vs. A is not included. So the number of comparisons presented is half that produced by "pairwisereflect". The ordering of group levels in the estimates vector is used to determine which ordering is included and which is not. If all orderings are of interest, such as for endptscale="log", use the "pairwisereflect" value above.
"allgroupstocontrol" Takes the first element group of the estimate vector, deems it the "control" group, and constructs pairwise comparisons of all other groups to it.

"custom" Indicates that a custom matrix of comparisons will be constructed, and that matrix needs to be specified in the contrastmatrix argument.

contrastmatrix

Only relevant if type="custom" is specified. In that case, a numeric matrix with the number of rows equal to the number of comparisons of interest is needed. The number of columns must be equal to the number of groups in the estimate vector. Each row in the matrix is assumed to represent a contrast of coefficients amongst the groups that defines the comparison of interest.

n

Needs to be specified only when errordf="approx". In this case it needs to be a vector of group sample sizes, the same in length as the estimates vector.

offset

Optional. If for example a numeric constant was added to all response values before calculation of the estimates as means in the "log" scale, this could be used to adjust the estimates and comparisons appropriately. The default is NULL.

cnames

If the default value of "derive" is used, row names are derived for the table that reflect the A vs. B type of comparison items in each row, using the names attributes of the estimates vector and the middle term of "vs." Otherwise, this can be explicitly specified and needs to be a character vector of the same length as estimates.

analysismame

Optional, a character text that will be printed along with the results table. The default value is the empty "".

endptname

Optional, a character text that will be printed along with the results table. The default value is the empty "".

digits

Optional. For output display purposes, values will be rounded to this numeric value. Only the integers of 0, 1, 2, 3, and 4 are accepted. No rounding is done during any calculations. The default value is NULL, which will examine each individual estimates value and choose the one that has the maximum number of digits after any trailing zeroes are ignored. The max number of digits will be 4.

addpct

Only relevant if endptscale="original". An column of percent differences is added for the comparisons, as a descriptive supplement to the original scale differences that are formally estimated.

display

One of three valid values:

"print" The default value; It calls a print method for the created object, which is a formatted text output of the table(s).

"none" Supresses any printing. Useful, for example, when just assignment of the resulting object is desired.

"show" Calls the default showDefault method, which will just print out the comparisons return object.

Details

Only two-sided Wald-type of confidence intervals are possible with this function.
When `mcadjust=TRUE`, a status message of "Some time may be needed as the critical point " "from the multcomp::summary.glht function call is calculated " is displayed at the console. This computed critical point is used for all subsequent p-value and confidence interval calculations.

The `multcomp` package provides a unified way to calculate critical points based on the comparisons of interest in a "family." Thus a user does not need to worry about choosing amongst the myriad names of multiple comparison procedures.

Value

Creates a return data frame object that specifies the comparison of the form A vs. B in each row, and with these columns:

- **estimate** The difference in group estimates in the comparison: A vs. B. If `endptscale="log"`, this will be back-transformed to a percent difference scale.
- **se** The estimated standard error of the difference estimate. If `endptscale="log"`, this estimate will be based on the Delta method, and will particularly begin to be a poor approximation when the standard error in the logscale exceeds 0.50.
- **lowerci** The lower 100 * (1-alpha) % confidence limit of the difference estimate. With the default `alpha=0.05`, this is 95%. If `endptscale="log"`, the confidence limit is first computed in the logarithmic scale of analysis, and then back-transformed to a percent difference scale.
- **upperci** The upper 100 * (1-alpha) % confidence limit of the difference estimate. With the default `alpha=0.05`, this is 95%. If `endptscale="log"`, the confidence limit is first computed in the logarithmic scale of analysis, and then back-transformed to a percent difference scale.
- **pval** The computed p-value from the test of the difference estimate.
- **meanA** or **geomeanA** The estimated "mean" for the left hand side "A" of the A vs. B comparison. If `endptscale="log"`, this is a back-transform to the original scale, and therefore is a "geometric" mean, and will be labelled `geomeanA`. Otherwise it is the arithmetic mean and labelled `meanA`.
- **seA** The estimated standard error of the `meanA` estimate. If `endptscale="log"`, this estimate will be based on the Delta method, and will particularly begin to be a poor approximation when the standard error in the logscale exceeds 0.50.
- **meanB** or **geomeanB** The estimated "mean" for the right hand side "B" of the A vs. B comparison. If `endptscale="log"`, this is a back-transform to the original scale, and therefore is a "geometric" mean, and will be labelled `geomeanB`. Otherwise it is the arithmetic mean and labelled `meanB`.
- **seB** The estimated standard error of the `meanB` estimate. If `endptscale="log"`, this estimate will be based on the Delta method, and will particularly begin to be a poor approximation when the standard error in the logscale exceeds 0.50.

An additional column `addpct` of percent differences is added if `endptscale="original"` and `addpct=TRUE`, as a descriptive supplement to the original scale differences that are formally estimated.

Warning

This function was created for internal use in the `cg` package as its use can be seen in the `comparisonsTable` methods code. Therefore any direct use of it needs to be done cautiously.
comparisonsGraph

Note
Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

References

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)

Easier way: notice the comparisonsTable call
comparisonsTable(canine.fit, model="olsonly")

Manual way
Instead of comparisonsTable(canine.fit, model="olsonly")
comparisons(estimates=canine.fit@olsfit$coef,
varcovmatrix=vcov(canine.fit@olsfit),
errordf=canine.fit@olsfit$df.residual,
endptscale="log",
analysisname="Canine",
digits=1,
endptname="Prostate Volume")

comparisonsGraph

Graph comparisons specified amongst groups

Description
Generic function to create a Comparisons Graph based on a Comparisons Table created in turn by the cg package.
comparisonsGraph

Usage

comparisonsGraph(compstable, cgtheme=TRUE, device="single",
 wraplength=20, cex.comps=0.7, ...)

Arguments

compstable A comparisonsTable object created by a comparisonsTable method from the
cg package.
There is one class of objects that is currently available:
cgOneFactorComparisonsTable, which is prepared by the
comparisonsTable.cgOneFactorFit method.

cgtheme When set to the default TRUE, ensures a trellis device is active with limited color
scheme. Namely, background, strip.shingle and strip.background are
each set to "white".

device Can be one of three values:
"single" The default, which will put all graph panels on the same device page.
"multiple" Relevant only when more than one panel of graphs is possible. In
that case, a new graphics device is generated each newly generated single-
paneled graph.
"ask" Relevant only when more than one panel of graphs is possible. In that
case, each are portrayed as a single-paneled graph, with the ask=TRUE ar-
argument specified in par so that user input confirmation is needed before the
graphs are drawn.

wraplength On the left hand vertical axis are each A vs. B comparison label from the
compstable object. An attempt at sensible formatting when a newline is needed
is made, but adjustment by this argument may be needed. The default is 20 char-
acters before wrapping to a newline.

cex.comps Similar to wraplength, adjustment of this argument parameter can be made to
fit the comparison labels on the left hand vertical axis.

... Additional arguments, depending on the specific method written for the compstable
object. Currently, there is only one such specific method; see
comparisonsGraph.cgOneFactorComparisonsTable for any additional argu-
ments that can be specified.

Value

The main purpose is the side effect of graphing to the current device. See the specific methods for
discussion of any return values.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]
comparisonsgraph

See Also

comparisonsGraph.cgOneFactorComparisonsTable

Examples

One Factor data

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
canine.comps1 <- comparisonsTable(canine.fit, mcadjust=TRUE,
type="allgroupscontrol", refgrp="CC")
comparisonsGraph(canine.comps1)

comparisonsgraph Create an graph of comparisons

Description

Creates a graph to see comparisons based on group estimates and variance-covariance matrix

Usage

comparisonsgraph(compstable, difftype, analysisname = "",
endptname = "", alpha = 0.05, digits = NULL,
titlestamp = TRUE, explanation = TRUE,
wraplength = 20, cex.comps = 0.7,
ticklabels = NULL, ...)

Arguments

comptype A data frame object of form like that created by the comparisons function.
difftype Must be specified as one of the following:
"percent" Presumes the estimated differences in compstable are Percent, and thus will space the x-axis logarithmically;
"amount" Presumes the estimated differences in compstable are Simple Amounts, and thus will space the x-axis in untransformed scale;
"simple" Synonym for amount, presumes the estimated differences in compstable are Simple Amounts, and thus will space the x-axis in untransformed scale.
The function `comparisonsgraph` is used to create a comparisons graph. It takes several arguments:

- `analysisname`: *Optional*, a character text or math-valid expression that will be used in the graph title. The default value is the empty "."
- `endptname`: *Optional*, a character text or math-valid expression that will be used as the x-axis label of the graph. The default value is the empty "."
- `alpha`: Significance level, by default set to 0.05. This is only used for labelling purposes.
- `digits`: *Optional*, for output display purposes in the graph, values will be rounded to this numeric value. Only the integers of 0, 1, 2, 3, and 4 are accepted. No rounding is done during any calculations. The default value is `NULL`, which will examine each individual data value and choose the one that has the maximum number of digits after any trailing zeroes are ignored. The max number of digits will be 4.
- `explanation`: If TRUE, which is the default, add explanatory message to the graph rendering about "Error bars that do not cross the zero line indicate statistically significant difference(s)" along with the confidence level derived from `alpha`.
- `titlestamp`: Specify text to the graph in the top of graph area, otherwise a default description of "Comparisons Graph" and `analysisname` will be constructed.
- `wraplength`: On the left hand axis are each A vs. B comparison label from the `compsstable` data frame. An attempt at sensible formatting when a newline is needed is made, but adjustment by this argument may be needed. The default is 20 characters before wrapping to a newline.
- `cex.comps`: Similar to `wraplength`, adjustment of this argument parameter can be made to fit the comparison labels on the left hand axis.
- `ticklabels`: *Optional*, before graphing the data, remove any automatically generated tickmarks for the x-axis, and use these tickmarks instead. A vector of tickmarks to be placed on the x-axis. Any numeric representations will be coerced to character.

Additional arguments. None are currently used.

Details

The minimum and maximum values across all the bar ends are added inside the plot region in blue, flush against the x-axis. In two panel cases, there is a tendency to fall outside the panel area even though right justified is used for the `adj` parameter of functions like `panel.text`.

Value

`comparisonsgraph` returns an invisible `NULL`. The main purpose is the side effect of graphing to the current device.

Warning

This function was created for internal use in the `cg` package as its use can be seen in the `comparisonsGraph` methods source code. Therefore any direct use of it needs to be done cautiously.
Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

comparisons

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
canine.comps <- comparisonsTable(canine.fit)

Easier way: notice the camel-case of the comparisonsGraph call
comparisonsGraph(canine.comps, model="olsonly")

Manual way
Instead of comparisonsGraph(canine.comps, model="olsonly")

canine.compsstable <- comparisons(estimates=canine.fit@olsfit$coef,
 varcovmatrix=vcov(canine.fit@olsfit),
 errordf=canine.fit@olsfit$df.residual,
 endptscale="log",
 analysisname="Canine",
 digits=1,
 endptname="Prostate Volume")

comparisonsgraph(canine.compsstable,
 difftype="percent",
 analysisname="Canine",
 digits=1,
 endptname=expression(paste(plain('Prostate Volume'),
 '(', plain(cm)^3, ', ')))
)

comparisonsGraph.cgOneFactorComparisonsTable

Create an graph of the comparisons in a cgOneFactorComparisonsTable object
comparisonsGraph.cgOneFactorComparisonsTable

Description

Creates a graph to see comparisons in a cgOneFactorComparisonsTable object

Usage

```r
## S4 method for signature 'cgOneFactorComparisonsTable'
comparisonsGraph(compstable, cgtheme=TRUE, device="single",
                 wraplength = 20, cex.comps = 0.7, ...)
```

Arguments

- `compstable`: A `cgOneFactorComparisonsTable` object prepared by the `comparisonsTable.cgOneFactorFit` method.
- `cgtheme`: When set to the default `TRUE`, ensures a trellis device is active with limited color scheme. Namely, `background`, `strip.shingle`, and `strip.background` are each set to "white".
- `device`: Can be one of three values:
 - "single". The default, which will put all graphs on the same device page. For example, when resistant & robust and classical least squares are present and `model="both"` (the default), a 2 x 1 paneled graph will be created.
 - "multiple". Relevant only when resistant & robust and classical least squares are present and `model="both"` (the default). In that case, a new graphics device is generated to hold the resistant & robust version, as a single-paneled graph. The classical least squares version is on the previous device.
 - "ask". Relevant only when resistant & robust and classical least squares are present and `model="both"` (the default). In that case, each are portrayed as a single-paneled graph, with the `ask=TRUE` argument specified in `par` so that user input confirmation is needed before the graphs are drawn.
- `wraplength`: On the left hand axis are each A vs. B comparison label from the `compstable` object. An attempt at sensible formatting when a newline is needed is made, but adjustment by this argument may be needed. The default is 20 characters before wrapping to a newline.
- `cex.comps`: Similar to `wraplength`, adjustment of this argument parameter can be made to fit the comparison labels on the left hand axis.
- `...`: Additional arguments. Two are currently valid:
 - `model`: For `cgOneFactorOneFactorComparisonsTable` objects that have classical least squares `lm()` or resistant & robust `rlm()` table slots, the following argument values are possible:
 - "both". Graphs of Comparisons Tables based on both the ordinary classical least squares and resistant & robust slots are populated. This is the default when both slots are present in the `cgOneFactorComparisonsTable` object specified in the `compstable` argument. If the resistant & robust fit is not available, this value is not relevant.
 - "olsonly". Only an Comparisons Graph based on the ordinary classical least squares table slot is performed.
"rronly" Only a Comparisons Graph based on the resistant and robust table slot is performed.

For other possible cgOneFactorComparisonsTable table slots such as accelerated failure time or unequal variance models, the model argument is not relevant, and the appropriate comparisons graph will be calculated for these model types.

ticklabels A list of two components:
mod Can be either of these two values,
 "replace" Before graphing the data, remove any automatically generated tickmarks for the x-axis, and create the tickmarks specified in the marks component below.
 "add" Before graphing the data, add tickmarks specified in the marks component to the automatically generated ones.

marks A vector of tickmarks to be placed on the x-axis. Any numeric representations will be coerced to character.

Details

The minimum and maximum values across all the bar ends are added inside the plot region in blue, flush against the x-axis. In two panel cases, there is a tendency to fall outside the panel area even though right justified is used for the adj parameter of functions like panel.text. The number of decimal places are determined by the digits and endptscale values in the compstable@settings slot.

Value

comparisonsGraph.cgOneFactorComparisonsTable returns an invisible NULL. The main purpose is the side effect of graphing to the current device.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgOneFactorComparisonsTable

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")
comparisonsGraph.cgPairedDifferenceComparisonsTable

canine.fit <- fit(canine.data)

```r
## Comparisons Tables
canine.comps0 <- comparisonsTable(canine.fit)

canine.comps1 <- comparisonsTable(canine.fit, mcadjust=TRUE,
    type="allgroupstocontrol", refgrp="CC")
```

```r
## Comparisons Graphs
comparisonsGraph(canine.comps0)

comparisonsGraph(canine.comps1)

comparisonsGraph(canine.comps1, cex.comps=0.9,
    ticklabels=list(mod="add", marks=c(300, 700)))
```

comparisonsGraph.cgPairedDifferenceComparisonsTable

Create an graph of the comparisons in a cgPairedDifferenceComparisonsTable object

Description

Creates a graph to see comparisons in a cgPairedDifferenceComparisonsTable object

Usage

```r
## S4 method for signature 'cgPairedDifferenceComparisonsTable'
comparisonsGraph(compstable,
    cgtheme=TRUE, device="single", wraplength = 20, cex.comps = 0.7, ...)
```

Arguments

- **compstable**: A cgPairedDifferenceComparisonsTable object prepared by the comparisonsTable.cgPairedDifferenceFit method.
- **cgtheme**: When set to the default TRUE, ensures a trellis device is active with limited color scheme. Namely, background, strip.shingle, and strip.background are each set to "white".
- **device**: Can be one of three values:
 - "single" The default, which will put all graphs on the same device page. For example, when resistant & robust and classical least squares are present and model="both" (the default), a 2 x 1 paneled graph will be created.
 - "multiple" Relevant only when resistant & robust and classical least squares are present and model="both" (the default). In that case, a new graphics device is generated to hold the resistant & robust version, as a single-paneled graph. The classical least squares version is on the previous device.
"ask" Relevant only when resistant & robust and classical least squares are present and model="both" (the default). In that case, each are portrayed as a single-paneled graph, with the ask=TRUE argument specified in par so that user input confirmation is needed before the graphs are drawn.

wraplength On the left hand axis are each A vs. B comparison label from the compstable object. An attempt at sensible formatting when a newline is needed is made, but adjustment by this argument may be needed. The default is 20 characters before wrapping to a newline.

cex.comps Similar to wraplength, adjustment of this argument parameter can be made to fit the comparison labels on the left hand axis.

Additional arguments. Two are currently valid:

model For cgPairedDifferencePairedDifferenceComparisonsTable objects that have classical least squares lm() or resistant & robust rlm() table slots, the following argument values are possible:

"both" Graphs of Comparisons Tables based on both the ordinary classical least squares and resistant & robust slots are populated. This is the default when both slots are present in the cgPairedDifferenceComparisonsTable object specified in the compstable argument. If the resistant & robust fit is not available, this value is not relevant.

"olsonly" Only a Comparisons Graph based on the ordinary classical least squares table slot is performed.

"rronly" Only a Comparisons Graph based on the resistant and robust table slot is performed.

ticklabels A list of two components:

mod Can be either of these two values,

"replace" Before graphing the data, remove any automatically generated tickmarks for the x-axis, and create the tickmarks specified in the marks component below.

"add" Before graphing the data, add tickmarks specified in the marks component to the automatically generated ones.

marks A vector of tickmarks to be placed on the x-axis. Any numeric representations will be coerced to character.

Details

The minimum and maximum values across the bar ends are added inside the plot region in blue, flush against the x-axis. The number of decimal places are determined by the digits and endptscale values in the compstable@settings slot.

Value

comparisonsGraph.cgPairedDifferenceComparisonsTable returns an invisible NULL. The main purpose is the side effect of graphing to the current device.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.
Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgPairedDifferenceComparisonsTable

Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1,
logscale=TRUE)
anorexiaFT.fit <- fit(anorexiaFT.data)
anorexiaFT.comps0 <- comparisonsTable(anorexiaFT.fit)
anorexiaFT.comps1 <- comparisonsTable(anorexiaFT.fit, model="olsonly", display="none")
comparisonsGraph(anorexiaFT.comps0)
comparisonsGraph(anorexiaFT.comps1)

`comparisonsTable`
Create a Table of Comparisons amongst Groups

Description

Create a table of comparisons based on a fit by the cg package.

Usage

`comparisonsTable(fit, type = "pairwiseflect", alpha = 0.05, addpct = FALSE, display = "print", ...)`

Arguments

- `fit`
 A fit object created with a `fit` method from the cg package. See specific methods.

- `type`
 Can be one of four values:

 "pairwiseflect"
 The default value; It calculates and lists all possible pairwise comparison permutations, as each pair order is included. In other words, Groups A vs. B and B vs. A will be included.
"pairwise" Calculates and lists all possible pairwise comparison combinations. Once a pair such as Groups A vs. B is specified, then the reflective B vs. A is not included. So the number of comparisons is half that produced by "pairwisereflect". The ordering of group levels in the fit object is used to determine which ordering is included and which is not. If all orderings are of interest, such as for settings$endptscale="log" in the fit object, use the "pairwisereflect" value above.

"allgroupstocontrol" Takes the value of settings$refgrp in the cg fit object, deems it the "control" group, and constructs pairwise comparisons of all other groups to it.

"custom" Indicates that a custom matrix of comparisons will be constructed, and that matrix needs to be specified in the contrastmatrix argument of a method.

alpha Significance level, by default set to \(0.05\).
addpct Only relevant if settings$endptscale="original" in the fit object. An column of percent differences is added for the comparisons, as a descriptive supplement to the original scale differences that are formally estimated.
display One of three valid values:

 "print" The default value, it calls a print method for the created ComparisonsTable object, which is a formatted text output of the table(s).
 "none" Supresses any printing. Useful, for example, when just assignment of the resulting object is desired.
 "show" Calls the default showDefault method, which will just print out the ComparisonsTable object components.

... Additional arguments, depending on the specific method written for the object. See the method-specific documentation for additional details.

Value A method-specific comparisonsTable object is returned. See the specific methods for discussion of return values.

Note Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s) Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also comparisonsTable.cgOneFactorFit, comparisonsTable.cgPairedDifferenceFit.
comparisonsTable.cgOneFactorFit

Examples

One Factor data

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
canine.comps0 <- comparisonsTable(canine.fit)
canine.comps1 <- comparisonsTable(canine.fit, mcadjust=TRUE,
type="allgroupstocontrol", refgrp="CC")

data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
analysisname="cytokine",
endptname="GM-CSF (pg/ml)",
logscale=TRUE)
gmcsfcens.fit <- fit(gmcsfcens.data, type="aft")
gmcsfcens.comps <- comparisonsTable(gmcsfcens.fit)

Paired Difference data

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1,
logscale=TRUE)
anorexiaFT.fit <- fit(anorexiaFT.data)
comparisonsTable(anorexiaFT.fit)

comparisonsTable.cgOneFactorFit

Create a table of comparisons amongst groups with the cgOneFactorFit object

Description

Create a table of comparisons based on the cgOneFactorFit object. Pairwise or custom specified contrasts are estimated and tested. A cgOneFactorComparisonsTable class object is created.
Usage

```R
## S4 method for signature 'cgOneFactorFit'
comparisonsTable(fit, type="pairwisereflect",
     alpha=0.05, addpct=FALSE, display="print", ...)
```

Arguments

- **fit**: An object of class `cgOneFactorFit`.
- **type**: Can be one of four values:
 - "pairwisereflect" The default value, it calculates and lists all possible pairwise comparison permutations, as each pair order is included. In other words, Groups A vs. B and B vs. A will be included.
 - "pairwise" Calculates and lists all possible pairwise comparison combinations. Once a pair such as Groups A vs. B is specified, then the reflective B vs. A is not included. So the number of comparisons is half that produced by "pairwisereflect". The ordering of group levels in the `fit` object is used to determine which ordering is included and which is not. If all orderings are of interest, such as for settings$endptscale="log" in the `fit` objects, use the "pairwisereflect" value above.
 - "allgroupstocontrol" Takes the value of settings$refgrp in the `cg` fit object, deems it the "control" group, and constructs pairwise comparisons of all other groups to it. This setting is required when the `refgrp` argument is specified in the call (see ... section below.)
 - "custom" Indicates the a custom matrix of comparisons will be constructed, and that matrix needs to be specified in the `contrastmatrix` argument.
- **alpha**: Significance level, by default set to 0.05.
- **addpct**: Only relevant if settings$endptscale="original" in the `fit` object. An column of percent differences is added for the comparisons, as a descriptive supplement to the original scale differences that are formally estimated.
- **display**: One of three valid values:
 - "print" The default value; It calls a print method for the created `cgOneFactorComparisonsTable` object, which is a formatted text output of the table(s).
 - "none" Supresses any printing. Useful, for example, when just assignment of the resulting object is desired.
 - "show" Calls the default `showDefault` method, which will just print out the `cgOneFactorComparisonsTable` components.
- **...**: Additional arguments.
- **mcadjust**: Do a multiple comparisons adjustment, based on the simultaneous inference capabilities of the `multcomp` package. See Details below. The default value is FALSE. If `mcadjust=TRUE` is specified, there will be a delay, usually just for a few seconds, due to computing time of the critical point in order to conduct the adjusted comparisons.
contrastmatrix Only relevant if type="custom" is specified. In that case, a numeric matrix with the number of rows equal to the number of comparisons of interest. The number of columns must be equal to the number of group means. Each row in the matrix is assumed to represent a contrast of coefficients amongst the groups that defines the comparison of interest.

refgrp If left at the default value of NULL, it will be set to the settings$refgrp value in the cg fit object. When set, it is deemed the "reference", or "control" group, so that pairwise comparisons of all other groups to it will be constructed when type="allgroupstocontrol". Please note the type="allgroupstocontrol" setting is REQUIRED when the refgrp argument is specified in the call with a valid non-NULL value.

model For cgOneFactorFit fit objects that have classical least squares lm or resistant & robust rlm fits, the following argument values are possible:

"both" Comparison tables based on both the ordinary classical least squares and resistant & robust fits are created. This is the default when both fits are present in the cgOneFactorFit object specified in the fit argument. If the resistant & robust fit is not available, this value is not relevant.

"olsonly" Only a comparison table based on the ordinary classical least squares olsfit fit slot is performed.

"rronly" Only a comparison table based on the resistant and robust rrfit fit slot is performed.

For other possible cgOneFactorFit fit components such as accelerated failure time or unequal variance models, the model argument is not relevant, and the appropriate comparisons table will be calculated for these model types.

Details

When mcadjust=TRUE, a status message of "Some time may be needed as the critical point" "from the multcomp::summary.glht function call is calculated" is displayed at the console. This computed critical point is used for all subsequent p-value and confidence interval calculations.

The multcomp package provides a unified way to calculate critical points based on the comparisons of interest in a "family". Thus a user does not need to worry about choosing amongst the myriad names of multiple comparison procedures.

Value

Creates an object of class cgOneFactorComparisonsTable, with the following slots:

ols.comprs The table of comparisons based on the olsfit component of the cgOneFactorFit, unless model="rronly" is specified. In that case the slot value is NULL. Will not be appropriate in the case where a valid aftfit component is present in the cgOneFactorFit object. See below for the data frame structure of the table.

rr.comprs The table of comparisons based on the rrfit component of the cgOneFactorFit object, if a valid resistant & robust fit object is present. If rrfit is a simple character value of "No fit was selected.", or model="olsonly" was specified, then the value is NULL. See below for the data frame structure of the table.
The table of comparisons based on the aftfit component of the cgOneFactorFit object if a valid accelerated failure time fit object is present. If aftfit is a simple character value of "No fit was selected.", then the value is NULL. See below for the data frame structure of the table.

The table of comparisons based on the uvfit component of the cgOneFactorFit object if a valid unequal variances fit object is present. The error degrees of freedom for each comparison estimate and test is individually estimated with a Satterthwaite approximation. See below for the data frame structure of the table.

A list of settings carried from the cgOneFactorFit fit object, and the addition of some specified arguments in the method call above: alpha, mcadjust, type, and addpct. These are used for the print.cgOneFactorComparisonsTable method, invoked for example when display="print".

The data frame structure of the comparisons table in a *.comprs slot consists of row.names that specify the comparison of the form A vs. B, and these columns:

- **estimate**: The difference in group means in the comparison: A vs. B. If settings$endptscale="log" in the fit object, this will be back-transformed to a percent difference scale.
- **se**: The estimated standard error of the difference estimate. If settings$endptscale="log" in the fit object, this estimate will be based on the Delta method, and will particularly begin to be a poor approximation when the standard error in the logscale exceeds 0.50.
- **lowerci**: The lower 100 * (1-alpha) % confidence limit of the difference estimate. With the default alpha=0.05, this is 95%. If settings$endptscale="log" in the fit object, the confidence limit is first computed in the logarithmic scale of analysis, and then back-transformed to a percent difference scale.
- **upperci**: The upper 100 * (1-alpha) % confidence limit of the difference estimate. With the default alpha=0.05, this is 95%. If settings$endptscale="log" in the fit object, the confidence limit is first computed in the logarithmic scale of analysis, and then back-transformed to a percent difference scale.
- **pval**: The computed p-value from the test of the difference estimate.
- **meanA** or **geomeanA**: The estimated mean for the left hand side "A" of the A vs. B comparison. If settings$endptscale="log" in the fit object, this is a back-transform to the original scale, and therefore is a geometric mean, and will be labelled geomeanA. Otherwise it is the arithmetic mean and labelled meanA.
- **seA**: The estimated standard error of the meanA estimate. If settings$endptscale="log" in the fit object, this estimate will be based on the Delta method, and will particularly begin to be a poor approximation when the standard error in the logscale exceeds 0.50.
- **meanB** or **geomeanB**: The estimated mean for the right hand side "B" of the A vs. B comparison. If settings$endptscale="log" in the fit object, this is a back-transform to the original scale, and therefore is a geometric mean, and will be labelled geomeanB. Otherwise it is the arithmetic mean and labelled meanB.
- **seB**: The estimated standard error of the meanB estimate. If settings$endptscale="log" in the fit object, this estimate will be based on the Delta method, and will particularly begin to be a poor approximation when the standard error in the logscale exceeds 0.50.

An additional column addpct of percent differences is added if endptscale="original" and addpct=TRUE, as a descriptive supplement to the original scale differences that are formally estimated.
Note
Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

References

Examples

```r
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
canine.comps0 <- comparisonsTable(canine.fit)
canine.comps1 <- comparisonsTable(canine.fit, mcajust=TRUE,
type="allgroupstocontrol", refgrp="CC")

data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
analysisname="cytokine",
endptname="GM-CSF (pg/ml)",
logscale=TRUE)
gmcsfcens.fit <- fit(gmcsfcens.data, type="aft")
gmcsfcens.comps <- comparisonsTable(gmcsfcens.fit)
```

Create a table of comparisons between two groups with the cgPairedDifferenceFit object
Description

Create a table of comparisons based on the cgPairedDifferenceFit object. A cgPairedDifferenceComparisonsTable class object is created.

Usage

```r
## S4 method for signature 'cgPairedDifferenceFit'
comparisonsTable(fit, type="pairwisereflect",
alpha=0.05, addpct=FALSE, display="print", ...)
```

Arguments

- **fit**: An object of class `cgPairedDifferenceFit`.
- **type**: Can be one of two values:
 - "pairwisereflect": The default value, it calculates and lists both pairwise comparison orders. In other words, Groups A vs. B and B vs. A will be included.
 - "pairwise": Calculates and lists only one of the two possible pairwise comparison orders. In other words, once A vs. B is specified, then the reflective B vs. A is not included. So the number of comparisons is half that produced by "pairwisereflect". The ordering of group levels in the fit object is used to determine which ordering is included and which is not. If both orderings are of interest, such as for settings$endptscale=="log" in the fit objects, use the "pairwisereflect" value above.
- **alpha**: Significance level, by default set to 0.05.
- **addpct**: Only relevant if settings$endptscale=="original" in the fit object. An column of percent differences is added for the comparisons, as a descriptive supplement to the original scale differences that are formally estimated.
- **display**: One of three valid values:
 - "print": The default value; It calls a print method for the created `cgPairedDifferenceComparisonsTable` object, which is a formatted text output of the table(s).
 - "none": Supresses any printing. Useful, for example, when just assignment of the resulting object is desired.
 - "show": Calls the default `showDefault` method, which will just print out the `cgPairedDifferenceComparisonsTable` components.
- **...**: Additional arguments. Only one is currently valid:
 - **model**: For `cgPairedDifferenceFit` fit objects that have classical least squares `lm` or resistant & robust `rlm` fits, the following argument values are possible:
 - "both": Comparison tables based on both the ordinary classical least squares and resistant & robust fits are created. This is the default when both fits are present in the `cgPairedDifferenceFit` object specified in the fit argument. If the resistant & robust fit is not available, this value is not relevant.
"olsonly" Only a comparison table based on the ordinary classical least squares olsfit fit slot is performed.
"rronly" Only a comparison table based on the resistant and robust rrfit fit slot is performed.

Value

Creates an object of class cgPairedDifferenceComparisonsTable, with the following slots:

ols.comprs The table of comparisons based on the olsfit component of the cgPairedDifferenceFit, unless model="rronly" is specified. In that case the slot value is NULL. See below for the data frame structure of the table.

rr.comprs The table of comparisons based on the rrfit component of the cgPairedDifferenceFit object, if a valid resistant & robust fit object is present. If rrfit is a simple character value of "No fit was selected.", or model="olsonly" was specified, then the value is NULL. See below for the data frame structure of the table.

settings A list of settings carried from the cgPairedDifferenceFit fit object, and the addition of some specified arguments in the method call above: alpha, type, and addpct. These are used for the print.cgPairedDifferenceComparisonsTable method, invoked for example when display="print".

The data frame structure of the comparisons table in a *.comprs slot consists of row.names that specify the comparison of the form A vs. B, and these columns:

estimate The difference in group means in the comparison: A vs. B. If settings$endptscale="log" in the fit object, this will be back-transformed to a percent difference scale.

se The estimated standard error of the difference estimate. If settings$endptscale="log" in the fit object, this estimate will be based on the Delta method, and will particularly begin to be a poor approximation when the standard error in the logscale exceeds 0.50.

lowerci The lower 100 * (1-alpha) % confidence limit of the difference estimate. With the default alpha=0.05, this is 95%. If settings$endptscale="log" in the fit object, the confidence limit is first computed in the logarithmic scale of analysis, and then back-transformed to a percent difference scale.

upperci The upper 100 * (1-alpha) % confidence limit of the difference estimate. With the default alpha=0.05, this is 95%. If settings$endptscale="log" in the fit object, the confidence limit is first computed in the logarithmic scale of analysis, and then back-transformed to a percent difference scale.

pval The computed p-value from the test of the difference estimate.

meanA or geomeana The estimated mean for the left hand side "A" of the A vs. B comparison. If settings$endptscale="log" in the fit object, this is a back-transform to the original scale, and therefore is a geometric mean, and will be labelled geomeana. Otherwise it is the arithmetic mean and labelled meanA.

seA The estimated standard error of the meanA estimate. If settings$endptscale="log" in the fit object, this estimate will be based on the Delta method, and will particularly begin to be a poor approximation when the standard error in the logscale exceeds 0.50.
meanB or geomeanB The estimated mean for the right hand side 'B' of the A vs. B comparison.
If settings$endptscale="log" in the fit object, this is a back-transform to the original scale, and therefore is a geometric mean, and will be labelled geomeanB. Otherwise it is the arithmetic mean and labelled meanB.

seB The estimated standard error of the meanB estimate. If settings$endptscale="log" in the fit object, this estimate will be based on the Delta method, and will particularly begin to be a poor approximation when the standard error in the logscale exceeds 0.50.

An additional column addpct of percent differences is added if endptscale="original" and addpct=TRUE, as a descriptive supplement to the original scale differences that are formally estimated. This is only possible for the model="ols" case, since the original arithmetic means are not estimated in the Resistant & Robust model="rr" case.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

Examples

data(anorexiaFT)

log scale
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1,
logscale=TRUE)
anorexiaFT.fit <- fit(anorexiaFT.data)
anorexiaFT.comps <- comparisonsTable(anorexiaFT.fit, display="none")
print(anorexiaFT.comps)
comparisonsTable(anorexiaFT.fit, model="only")
comparisonsTable(anorexiaFT.fit, model="rronly")

original scale evaluation
anorexiaFT.orig.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1,
logscale=FALSE)
correlationTable

anorexiaFT.orig.fit <- fit(anorexiaFT.orig.data)

comparisonsTable(anorexiaFT.orig.fit)

comparisonsTable(anorexiaFT.orig.fit, addpct=TRUE)

correlationTable Compute Correlations

Description
Create a table of correlations of the data in a cg data object.

Usage
correlationTable(data, display = "print", ...)

Arguments
data A data object created and prepared (see prepare) using the cg package.
display One of three valid values:
"print" The default value; It calls a print method for the created correlationTable object, which is a formatted text output of the table.
"none" Suppresses any printing. Useful, for example, when just assignment of the resulting object is desired.
"show" Calls the default showDefault method, which will just print out the correlationTable components.
...

Additional arguments. Currently only one is valid:
logscale A logical value, indicating whether the correlation of the log transformed data should be calculated. If logscale is not specified (default), its value is taken from the data object's component in the settings slot.

Value
A method-specific correlationTable object is returned. See the specific methods for discussion of return values.

Note
Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]
See Also
correlationTable.cgPairedDifferenceData

Examples
data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format = "groupcolumns", analysisname = "Anorexia FT", endptname = "Weight", endptunits = "lbs", expunitname = "Patient", digits = 1, logscale = TRUE)
correlationTable(anorexiaFT.data)

correlationTable.cgPairedDifferenceData

Compute Correlations from a cgPairedDifferenceData object

Description
Create a table of correlations of the data in a cgPairedDifferenceData object.

Usage
```r
## S4 method for signature 'cgPairedDifferenceData'
correlationTable(data, display = "print", ...)
```

Arguments
- `data` A cgPairedDifferenceData object, typically created by `prepareCGPairedDifferenceData`.
- `display` One of three valid values:
 - "print" The default value; It calls a print method for the created correlationTable object, which is a formatted text output of the table.
 - "none" Supresses any printing. Useful, for example, when just assignment of the resulting object is desired.
 - "show" Calls the default `showDefault` method, which will just print out the cgPairedDifferenceData object components.
- `...` Additional arguments. Currently only one is valid:
 - `logscale` A logical value, indicating whether the correlation of the log transformed data should be calculated. If logscale is not specified, its value is taken from the cgPairedDifferenceData object, which `prepareCGPairedDifferenceData` sets from its logscale argument.
Details

The returned table contains correlations between the paired samples. The Pearson and Spearman methods are applied with the `cor.test` function from the core `stats` package. If the logscale option is specified (either explicitly, or implicitly from the `cgPairedDifferenceData` object), then the Pearson calculation on the log transformed data is added.

Value

Creates an object of class `cgPairedDifferenceCorrelationTable`, with the following slots:

- `contents` The table of correlations for the paired differences. See below for the data frame structure of the table.
- `settings` A list of settings carried from the `cgPairedDifferenceData` data object. These are used for the `print.cgPairedDifferenceCorrelationTable` method, invoked for example when `display="print"`.

The data frame structure of the correlation table in a `contents` slot consists of `row.names` that specify the correlation method: Pearson, and Spearman if original (i.e. `logscale=FALSE`), and Pearson Original, Pearson Log, and Spearman if `logscale=TRUE`. The header label for the column of calculated correlations is `correlation`.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

Examples

```r
data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
extptname="Weight",
extptunits="lbs",
exptunitname="Patient",
digits=1, logscale=TRUE)

correlationTable(anorexiaFT.data)

## Show only correlations computed on original scale
correlationTable(anorexiaFT.data, logscale=FALSE)
```
descriptiveTable
Compute Descriptive Summary Statistics of Groups

Description
Create a table of quantiles and other summary statistics of the data in a **cg** data object.

Usage
```r
descriptiveTable(data, display = "print", ...)
```

Arguments
- `data`
 A data object created and prepared (see **prepare**) using the **cg** package.
- `display`
 One of three valid values:
 - "print" The default value; It calls a print method for the created **descriptivetable** object, which is a formatted text output of the table.
 - "none" Supresses any printing. Useful, for example, when just assignment of the resulting object is desired.
 - "show" Calls the default **showDefault** method, which will just print out the **descriptivetable** components.
- `...`
 Additional arguments. Currently only one is valid:
 - `logscale` A logical value, indicating whether or not the geometric means and standard errors should be included in the summary. If `logscale` is not specified (default), its value is taken from the `data` object.

Value
A method-specific **descriptivetable** object is returned. See the specific methods for discussion of return values.

Note
Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also
- `descriptiveTable.cgOneFactorData`
Examples

```r
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
edptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
descriptiveTable(canine.data)
```

```
# Censored Data
data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
analysisname="cytokine",
edptname="GM-CSF (pg/ml)",
logscale=TRUE)
descriptiveTable(gmcsfcens.data)
```

```
# Paired Difference Data
data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
edptname="Weight",
edptunits="lbs",
expunitname="Patient",
digits=1, logscale=TRUE)
descriptiveTable(anorexiaFT.data)
```

Description

Create a table of quantiles and other summary statistics of the data in a \texttt{cgOneFactorData} object.

Usage

```
## S4 method for signature 'cgOneFactorData'
descriptiveTable(data, display = "print", ...)
```

Arguments

- **data**: A \texttt{cgOneFactorData} object, typically created by \texttt{prepareCGOneFactorData}.
- **display**: One of three valid values:
The default value: It calls a print method for the created `descriptiveTable` object, which is a formatted text output of the table.

"none" Suppresses any printing. Useful, for example, when just assignment of the resulting object is desired.

"show" Calls the default `showDefault` method, which will just print out the `cgOneFactorDescriptiveTable` object components.

Additional arguments. Currently only one is valid:

- **logscale** A logical value, indicating whether or not the geometric means and standard errors should be included in the summary. If `logscale` is not specified, its value is taken from the `cgOneFactorData` object, which `prepareCGOneFactorData` sets from its `logscale` argument.

Details

The returned table contains quantiles, means, sample sizes, and estimates of variability for each group. If censored data are present, the estimated quantiles accommodate that with the Kaplan-Meier method, following Gentleman and Crowley (1991). The number of censored/incomplete and number of complete observations are also included when censored data is present in any of the groups. If the `logscale` option is specified (either explicitly, or implicitly from the `cgOneFactorData` object), then the geometric mean and geometric standard error for each group are also included. See the Value section below for details.

Value

Creates an object of class `cgOneFactorDescriptiveTable`, with the following slots:

- **contents** The table of descriptive summary statistics for each group. See below for the data frame structure of the table.

- **settings** A list of settings carried from the `cgOneFactorData` data object. These are used for the `print.cgOneFactorDescriptiveTable` method, invoked for example when `display="print"`.

The data frame structure of the descriptive table in a `contents` slot consists of `row.names` that specify the group, and these columns:

- **n** The sample size of the group.
- **Min** The minimum value of the group.
- **25%ile** The 25th percentile of the group, estimated with the `quantile` function.
- **Median** The median value of the group.
- **75%ile** The 75th percentile of the group, estimated with the `quantile` function.
- **Max** The maximum value of the group.
- **Mean** The arithmetic mean value of the group.
- **StdDev** The standard deviation value of the group.
- **StdErr** The standard error value of the group.

If `logscale=TRUE`, then two additional columns are added:

- **GeoMean** The geometric mean value of the group.
SEGeoMean The estimated standard error associated with the geometric mean. This is calculated with the Delta Method, and will particularly lose accuracy in its useful approximation once the standard error in the log scale exceeds 0.50. A warning message is issued when this occurs.

If censored data are present in the cgOneFactorData object, then two more columns are added:

ncensored The number of censored / incomplete observations.
ncomplete The number of complete observations.

These two ncensored and ncomplete quantities will add up to n above and be placed adjacent to it.

The presence of censored observations will convert columns such as the Min and Max to character values, with the appropriate "\" and "\" symbols for right-censoring and left-censoring, respectively.

For censored data, Kaplan-Meier estimates are used for the quantiles, as proposed by Gentleman and Crowley (1991). The survreg::survfit conventions are followed for interpolation of these quantiles. With enough censored data observations in a group, certain quantiles may not be estimable. If any censored observations are present, the mean, geometric mean, and associated standard errors will not be calculated. The <NA> character representation is used.

Note
Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

References

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")

descriptiveTable(canine.data)

Remove the geometric mean and standard error columns
descriptiveTable(canine.data, logscale=FALSE)

Censored Data
data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
 analysisname="cytokine")
Compute Descriptive Summary Statistics of Groups in a cgPairedDifferenceData object

Description

Create a table of quantiles and other summary statistics of the data in a cgPairedDifferenceData object.

Usage

```r
# S4 method for signature 'cgPairedDifferenceData'
descriptiveTable(data, display = "print", ...)
```

Arguments

- `data`: A cgPairedDifferenceData object, typically created by `prepareCGPairedDifferenceData`.
- `display`: One of three valid values:
 - "print": The default value; It calls a print method for the created descriptiveTable object, which is a formatted text output of the table.
 - "none": Supresses any printing. Useful, for example, when just assignment of the resulting object is desired.
 - "show": Calls the default `showDefault` method, which will just print out the cgPairedDifferenceData object components.
- `...`: Additional arguments. Currently only one is valid:
 - `logscale`: A logical value, indicating whether or not the geometric means, their standard errors, and ratio differences should be included in the summary. If logscale is not specified, its value is taken from the cgPairedDifferenceData object, which `prepareCGPairedDifferenceData` sets from its logscale argument.

Details

The returned table contains quantiles, means, sample sizes, and estimates of variability for each group, and also for the paired differences. It also presents the same summary measures for the paired differences from the groups. If the logscale option is specified (either explicitly, or implicitly from the cgPairedDifferenceData object), then the geometric mean and geometric standard error for each of the two groups are included. Also included are summary measures of the ratio and percent forms of the paired differences. See the Value section below for details.
Value

Creates an object of class `cgPairedDifferenceDescriptiveTable`, with the following slots:

- **contents** The table of descriptive summary statistics for each group, and also for paired differences. See below for the data frame structure of the table.

- **settings** A list of settings carried from the `cgPairedDifferenceData` data object. These are used for the `print.cgPairedDifferenceDescriptiveTable` method, invoked for example when `display="print"`.

The data frame structure of the descriptive table in a `contents` slot consists of `row.names` that specify the group or paired difference, and these columns:

- **n** The sample size.
- **Min** The minimum value.
- **25%ile** The 25th percentile, estimated with the `quantile` function.
- **Median** The median value.
- **75%ile** The 75th percentile, estimated with the `quantile` function.
- **Max** The maximum value.
- **Mean** The arithmetic mean value.
- **StdDev** The standard deviation value.
- **StdErr** The standard error value.

If `logscale=TRUE`, then two additional columns are added:

- **GeoMean** The geometric mean value of the group.
- **SEGeoMean** The estimated standard error associated with the geometric mean. This is calculated with the Delta Method, and will particularly lose accuracy in its useful approximation once the standard error in the log scale exceeds 0.50. A warning message is issued when this occurs.

The third row of simple difference summaries has `GeoMean` and `SEGeoMean` are set to `<NA>`.

Fourth and fifth rows are also added with summaries of the paired ratio differences and percent differences. The `StdDev` and `StdErr` values are set to `<NA>` in these two rows. The `GeoMean` and `SEGeoMean` values are calculated via the the Delta Method, with the same caveats described above.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]
Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns", analysisname="Anorexia FT", endptname="Weight", endptunits="lbs", expunitname="Patient", digits=1, logscale=TRUE)

descriptiveTable(anorexiaFT.data)

Remove the geometric mean and standard error columns,
and the Ratio / Percent Rows, since they are no longer applicable.

descriptiveTable(anorexiaFT.data, logscale=FALSE)

diffGraph

Graph Paired Differences

Description

Generic function to create a graph of differences from a data object created by the cg package.

Usage

diffGraph(data, ...)

Arguments

data A data object created with a prepare function or method from the cg package. The only class of object currently valid is cgPairedDifferenceData, which is created by the prepareCGPairedDifferenceData function.

... Additional arguments, depending on the specific method written for the object. Currently, there is only one such specific method; see diffGraph.cgPairedDifferenceData for any additional arguments that can be specified.

Details

Minimum and maximum values from ranges of data are respectively labeled in the bottom and top left corners of graph regions.

Tick marks are attempted to be chosen wisely. For log-scaled axes in particular, leading digits of 2, 5, and 10 for values are included if possible. Since the algorithm is empirical, the ticklabels argument is available for further refinement or complete replacement of tickmarks.
diffGraph.pairedDifferenceData

Value

The main purpose is the side effect of graphing to the current device. See the specific methods for discussion of any return values.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

diffGraph.cgPairedDifferenceData

Examples

data(anorexia.FT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1, logscale=TRUE)

diffGraph(anorexiaFT.data)

Graph the data on the original scale instead of the log scale.
diffGraph(anorexiaFT.data, logscale=FALSE)
Arguments

data A cgPairedDifferenceData object.

... Additional arguments, both optional. Two are currently valid:

logscale A logical value, indicating whether or not the individual differences along the y-axis in the difference graph should be plotted on the logarithmic scale. If logscale is not specified, its value is taken from the cgPairedDifferenceData object, which prepareCGPairedDifferenceData sets from its logscale argument.

ticklabels A list of two components:
 mod Can be either of these two values,
 "replace" Before graphing the data, remove any automatically generated tickmarks for the y-axis, and create the tickmarks specified in the marks component below.
 "add" Before graphing the data, add tickmarks specified in the marks component below, to the automatically generated ones.

 marks A vector of tickmarks to be placed on the y-axis. Any numeric representations will be coerced to character.

Details

The individual paired differences are displayed in 3 ways side by side.

Each difference is determined by subtracting the refgrp value from the other group's value, for each experimental unit in the data object of class cgPairedDifferenceData.

In the middle section, the individual paired difference points are jittered, and open circles are used to alleviate potential overlap and the danger of representing multiple points as a single point.

In the right hand section, a boxplot is added, similar to that produced by graphics::boxplot.default, but with the median shown as a "+" and the mean shown as a "o". A warning on the lack of usefulness of a boxplot is added to the graph if there are have 5 or fewer paired differences.

Tick marks are attempted to be chosen wisely. For log-scaled axes in particular, leading digits of 2, 5, and 10 for values are included if possible. Since the algorithm is empirical, the ticklabels argument is available for further refinement or complete replacement of tickmarks.

The heading for the graph includes a creation of a character string: The "other" group versus the refgrp, e.g. B vs. A. Also included in the heading is the analysisname setting from the cgPairedDifferenceData object.

The label for the y-axis also includes the B vs. A character description of the comparison. If logscale=TRUE, percent differences represent the tickmarks on the log-spaced scale, since the differences in the log scale correspond to ratios in the original scale, e.g. B / A. Also included in the y-axis label is a character string derived from the endptname and endptunits settings in the cgPairedDifferenceData object. Percent differences make up the left-hand y-axis, and the corresponding Ratios make the right-hand left axis.

Minimum and maximum values from the range of the differences are respectively labeled in the bottom and top left corners of the graph region. Percentages are displayed when logscale=TRUE.
Value

diffGraph.cgPairedDifferenceData returns an invisible NULL. The main purpose is the side effect of graphing to the current device.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

diffGraph.cgPairedDifferenceData

Examples

data(anorexia.FT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1, logscale=TRUE)
diffGraph(anorexiaFT.data)

Graph the data on the original scale instead of the log scale.
diffGraph(anorexiaFT.data, logscale=FALSE)
Arguments

fit A fit object created with a fit method from the cg package.
cutoffwt It has no default and must be specified as a numeric between 0 and 1 exclusive. It is a threshold. All observations that fall beneath the threshold will be identified. For example, a cutoffwt=0.90 will yield those observations that were downweighted by at least 10%.
display One of three valid values:
 "print" The default value; It calls a print method for the created downweightedTable object, which is a formatted text output of the table(s).
 "none" Supresses any printing. Useful, for example, when just assignment of the resulting object is desired.
 "show" Calls the default showDefault method, which will just print out the downweightedTable components.
 ... Additional arguments, depending on the specific method written for the object. See the method-specific documentation for additional details.

Value

A method-specific downweightedTable object is returned. See the specific methods for discussion of return values.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

References

See Also
downweightedTable.cgOneFactorFit, MASS::rlm

Examples

One Factor data
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
downweightedTable.cgOneFactorFit

Create a table of downweighted observations from a Resistant & Robust fit.

Description

Create a table of downweighted observations based on a rrfit object within a cgOneFactorFit object. A cgOneFactorDownweightedTable class object is created.

Usage

```r
## S4 method for signature 'cgOneFactorFit'
downweightedTable(fit, cutoffwt, display="print", ...)
```

Arguments

- **fit**: A fit object of class `cgOneFactorFit`.
- **cutoffwt**: It has no default and must be specified as a numeric between 0 and 1 exclusive. It is a threshold. All observations that fall *beneath* the threshold will be identified. For example, a cutoffwt=0.90 will yield those observations that were downweighted by at least 10%.
- **display**: One of three valid values:
 - "print": The default value; It calls a print method for the created `cgOneFactorDownweightedTable` object, which is a formatted text output of the table(s).
"none" Supresses any printing. Useful, for example, when just assignment of the resulting object is desired.

"show" Calls the default showDefault method, which will just print out the cgOneFactorDownweightedTable components.

... Additional arguments. None are currently defined for this method.

Details

If no observations meet the cutoff criteria, a text message of the cgOneFactorDownweightedTable content emptiness is output instead.

The reported weights are in the scale of the observation, not the sum of squared errors representation for the likelihood. Thus they are derived from the square root of the w component from a MASS::rlm fit object.

Value

An object of class cgOneFactorDownweightedTable, with the following slots:

- contents: A data frame where each row is an observation from the fitted data set that meets the cutoff criteria, and these columns:
 - group: The group identified from the fitted data.
 - endpoint: The observed response value.
 - weight: The weight associated to the observation from the resistant/robust fit.
 - pct down-weighted: An expression of the weight in terms of percent reduction from the maximum of 1.

If no observations meet the cutoff criteria, the contents slot is set to NULL.

cutoffwt: Taken from the specified cutoffwt argument value.

settings: A list of settings carried from the cgOneFactorFit object, and the addition of the specified cutoffwt argument in the method call above. These are used for the print.cgOneFactorDownweightedTable method, invoked for example when display="print".

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

References

See Also

cgOneFactorFit, MASS::rlm
Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
canine.dwtable <- downweightedTable(canine.fit, cutoff=0.95)
downweightedTable(canine.fit, cutoff=0.75) ## No observation
 ## downweighted at least 25%

downweightedTable.cgPairedDifferenceFit

Create a table of downweighted observations from a Resistant & Robust fit.

Description

Create a table of downweighted observations based on a rfit object within a cgPairedDifferenceFit
object. A cgPairedDifferenceDownweightedTable class object is created.

Usage

S4 method for signature 'cgPairedDifferenceFit'
downweightedTable(fit, cutoffwt, display = "print",...)

Arguments

fit A fit object of class cgPairedDifferenceFit.
cutoffwt It has no default and must be specified as a numeric between 0 and 1 exclusive.
 It is a threshold. All observations that fall beneath the threshold will be identified.
 For example, a cutoffwt=0.90 will yield those observations that were downweighted by at least 10%.
display One of three valid values:
 "print" The default value; It calls a print method for the created
cgPairedDifferenceDownweightedTable object, which is a formatted text
 output of the table(s).
 "none" Supresses any printing. Useful, for example, when just assignment of
 the resulting object is desired.
 "show" Calls the default showDefault method, which will just print out the
cgPairedDifferenceDownweightedTable components.
...

Additional arguments. None are currently defined for this method.
Details

If no observations meet the cutoff criteria, a text message of the \texttt{cgPairedDifferenceDownweightedTable} content emptiness is output instead.

The reported weights are in the scale of the observation, not the sum of squared errors representation for the likelihood. Thus they are derived from the square root of the w component from a \texttt{MASS::rlm} fit object.

Value

An object of class \texttt{cgPairedDifferenceDownweightedTable}, with the following slots:

- \texttt{contents}: A data frame where each row is an observation from the fitted data set that meets the cutoff criteria, and these columns:
 - \texttt{expunit}: The experimental unit name identified from the fitted data.
 - \texttt{grp1}: The observed response value from group 1.
 - \texttt{grp2}: The observed response value from group 2.
 - \texttt{weight}: The weight associated to the observation from the resistant / robust fit.
 - \texttt{pct down-weighted}: An expression of the weight in terms of percent reduction from the maximum of 1.
 - \texttt{Simple Diff}: The difference of observed response value between the two groups.
 - \texttt{Ratio Diff}: The percent difference of observed response value between the two groups. NOTE this only occurs when \texttt{logscale=TRUE} from the \texttt{cgPairedDifferenceFit} object settings in the fit argument.
 - \texttt{Pct Diff}: The percent difference of observed response value between the two groups. NOTE this only occurs when \texttt{logscale=TRUE} from the \texttt{cgPairedDifferenceFit} object settings in the fit argument.

- \texttt{messages}: A message when the \texttt{contents} slot is set to NULL.

- \texttt{settings}: A list of settings carried from the \texttt{cgPairedDifferenceFit} object. These are used for the \texttt{print.cgPairedDifferenceDownweightedTable} method, invoked for example when \texttt{display="print"}.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis \[aut, cre, cph\], John Oleynick \[aut\], Eva Ye \[ctb\]

References

See Also

\texttt{cgPairedDifferenceFit, MASS::rlm}
Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns", analysisname="Anorexia FT", endptname="Weight", endptunits="lbs", expunitname="Patient", digits=1, logscale=TRUE)

anorexiaFT.fit <- fit(anorexiaFT.data)

downweightedTable(anorexiaFT.fit, cutoffwt=0.25) ## No observation

downweightedTable(anorexiaFT.fit, cutoffwt=0.75) ## downweighted at least 25%

$errorBarGraph$

Create an Error Bar graph amongst groups

Description

Generic function to create a Error Bar graph based on a fit by the cg package.

Usage

$errorBarGraph(fit, mcadjust=FALSE, alpha = 0.05, cgtheme = TRUE, device="single", ...)$

Arguments

- **fit**: A fit object created by a fit method from the cg package.
- **mcadjust**: Do a multiple comparisons adjustment, based on the simultaneous inference capabilities of the multcomp package. See Details below. The default value is FALSE. If mcadjust=TRUE is specified, there will be a delay, usually just for a few seconds, due to computing time of the critical point in order to create the error bar intervals.
- **alpha**: Significance level, by default set to 0.05 so that confidence levels are 95%.
- **cgtheme**: When set to the default TRUE, ensures a trellis device is active with limited color scheme. Namely background, strip.shingle, and strip.background are each set to "white".
- **device**: Can be one of three values:
 - "single" The default, which will put all graph panels on the same device page.
 - "multiple" Relevant only when more than one panel of graphs is possible. In that case, a new graphics device is generated each newly generated single-paneled graph.
"ask" Relevant only when more than one panel of graphs is possible. In that case, each are portrayed as a single-paneled graph, with the ask=TRUE argument specified in par so that the user input confirmation is needed before the graphs are drawn.

... Additional arguments, depending on the specific method written for the object. See the method-specific documentation for additional details.

Details

When mcadjust=TRUE, a status message of "Some time may be needed" "as the critical point from the multcomp::summary.glht function call is calculated" is displayed at the console. This computed critical point is used for all subsequent p-value and confidence interval calculations.

Value

The main purpose is the side effect of graphing to the current device. See specific methods for discussion of any return values.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

References

See Also

errorBarGraph.cgOneFactorFit

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)

errorBarGraph(canine.fit)

errorBarGraph(canine.fit, mcadjust=TRUE, model="olsonly")
errorbargraph

Create an error bar graph based on pairwise multiple comparisons

Description

Creates a graph to see pairwise comparisons amongst groups. The method of Andrews, Sarner, and Snee (1980) is applied to visualizes significant differences via non-overlapping error bars.

Usage

errorbargraph(\texttt{estimates}, \texttt{centralvar}, \texttt{critpoint}, \texttt{endptscale}="log", \texttt{analysisname}="", \texttt{endptname}="", \texttt{alpha}=0.05, \texttt{digits}=\texttt{NULL}, \texttt{approxstamp}=FALSE, \texttt{titlestamp}=TRUE, \texttt{offset}=\texttt{NULL}, \texttt{ticklabels}=\texttt{NULL}, ...)

Arguments

\textbf{estimates} \quad A named vector of estimates. Each estimate element is a measure that will be the center of the error bar of the group. The name of each group must be present in the names attribute of the vector.

\textbf{centralvar} \quad A single variance value to be used for each group's error bar construction. In the canonical case it is the square of the estimated standard error of the mean estimate of the group, where each group also has the same standard error (and sample size). If the standard errors / variances are similar enough across the groups, the visualization may still be effective even though the error bar lengths will be approximations.

\textbf{critpoint} \quad The single critical value of the theoretical reference distribution. In the canonical case it is the t-distribution quantile for estimates derived from a standard linear model with homoscedastic variance. It could also reflect a multiplicity adjustment, or like the \texttt{centralvar} discussion in the previous item, it may serve as part of a visually useful approximation for other cases.

\textbf{endptscale} \quad Must be specified as "log" or "original". If the default "log" then the y-axis will be created with a logarithmic spacing. The tick marks will be calculated accordingly and expressed in the original scale of the estimates. The \texttt{estimates} vector must already be in the logarithmic scale.

\textbf{analysisname} \quad \textit{Optional}, a character text or math-valid expression that will be set for default use in graph title and table methods. The default value is the empty "".

\textbf{endptname} \quad \textit{Optional}, a character text or math-valid expression that will be set for default use as the y-axis label of graph methods, and also used for table methods. The default value is the empty "".

\textbf{alpha} \quad Significance level, by default set to 0.05, which equates to a 95% confidence level. This is just used for labelling purposes.

\textbf{digits} \quad \textit{Optional}, for output display purposes in graphs and table methods, values will be rounded to this numeric value. Only the integers of 0, 1, 2, 3, and 4 are accepted. No rounding is done during any calculations. The default value is \texttt{NULL}, which will examine each individual \texttt{estimates} value and choose the one
that has the maximum number of digits after any trailing zeroes are ignored. The max number of digits will be 4.

approxstamp Add text to the graph that acknowledges that the error bar method is approximate.

titlestamp Add text to the top margin above the graph area.

offset Optional, if for example a numeric constant was added to all response values before calculation of the estimate as a mean, this could be used to shift the axis marks appropriately. The default value is NULL.

ticklabels Optional, before graphing the data, remove any automatically generated tickmarks for the y-axis, and use these tickmarks instead. A vector of tickmarks to be placed on the y-axis. Any numeric representations will be coerced to character.

... Additional arguments. None are currently used.

Details

The statistical method of Andrews, Sarner, and Snee (1980) is applied to visualizes significant differences via non-overlapping error bars. The method is exact when there are equal standard errors amongst the groups, and approximate otherwise. The method’s usefulness declines as the standard errors become more disparate.

When two groups are compared, nonoverlapping error bars indicate a statistically significant pairwise difference. Conversely, if the error bars overlap, there is no such significant difference. In cases of approximation, or borderline overlap that is seen, the actual comparison needs to be consulted to judge significance with a p-value.

The minimum and maximum values across all the bar ends are added inside the plot region in blue, flush against the y-axis. The number of decimal places are determined by the digits value.

Value

errobargraph returns an invisible NULL. The main purpose is the side effect of graphing to the current device.

Warning

This function was created for internal use in the cg package as its use can be seen in the errorBarGraph methods code. Therefore any direct use of it needs to be done cautiously.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]
errorBarGraph.cgOneFactorFit

References

Examples
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)

Easier way: notice the camel case of the errorBarGraph call
errorBarGraph(canine.fit, model="olsonly")

Manual way
Instead of errorBarGraph(canine.fit, model="olsonly")
errorbargraph(estimates=canine.fit@olsfit$coef,
 centralvar=((summary(canine.fit@olsfit)$sigma^2) /
 unique(sapply(canine, length))),
 critpoint=qt(.975, df=canine.fit@olsfit$df.residual),
 endptscale="log",
 analysisname="Canine",
 digits=1,
 endptname=expression(paste(plain("Prostate Volume"),
 , plain(cm)^3 , ""))
)

Create an Error Bar graph amongst groups in a cgOneFactorFit object

Description
Creates a graph to see comparisons amongst groups based on the cgOneFactorFit object. The method of Andrews, Sarner, and Snee (1980) is applied to visualizes significant differences via non-overlapping error bars.

Usage
S4 method for signature 'cgOneFactorFit'
errorBarGraph(fit, mcadjust = FALSE, alpha = 0.05,
 cgtheme = TRUE, device = "single", ...)
Arguments

fit
A fit object of class `cgOneFactorFit`.

mcadjust
Do a multiple comparisons adjustment, based on the simultaneous inference capabilities of the `multcomp` package. See Details below. The default value is FALSE. If `mcadjust=TRUE` is specified, there will be a delay, usually just for a few seconds, due to computing time of the critical point in order to conduct the adjusted comparisons.

alpha
Significance level, by default set to 0.05, which equates to a 95% confidence level.

cgtheme
When set to the default TRUE, ensures a trellis device is active with limited color scheme. Namely background, stripNshingle, and stripNbackground are each set to "white".

device
Can be one of three values:

"single" The default, which will put all graphs on the same device page. For example, when resistant & robust and classical least squares are present and `model=both` (the default), a 2 x 1 paneled graph will be created.

"multiple" Relevant only when resistant & robust and classical least squares are present and `model=both` (the default). In that case, a new graphics device is generated to hold the resistant & robust version, as a single-paneled graph. The classical least squares version is on the previous device.

"ask" Relevant only when resistant & robust and classical least squares are present and `model=both` (the default). In that case, each are portrayed as a single-paneled graph, with the `ask=TRUE` argument specified in `par` so that the user input confirmation is needed before the graphs are drawn.

Additional arguments. Two are currently valid:

model
For `cgOneFactorFit` objects that have classical least squares `lm()` or resistant & robust `rlm()` fits, the following argument values are possible:

"both" Error Bar graphs based on both the ordinary classical least squares and resistant & robust fits are performed. This is the default when both fits are present in the `cgOneFactorFit` object specified in the `fit` argument. If the resistant & robust fit is not available, this value is not relevant.

"olsonly" Only an Error Bar graph based on the ordinary classical least squares `olsfit` fit is performed.

"rronly" Only a Error Bar Graph based on the resistant and robust `rrfit` fit is performed.

For other possible `cgOneFactorFit` fit slots such as accelerated failure time or unequal variance models, the `model` argument is not relevant, and the appropriate comparisons table will be calculated for these model types.

ticklabels
A list of two components:

mod
Can be either of these two values,

"replace" Before graphing the data, remove any automatically generated tickmarks for the y-axis, and create the tickmarks specified in the `marks` component below.
"add" Before graphing the data, add tickmarks specified in the marks component below, to the automatically generated ones.

`marks` A vector of tickmarks to be placed on the y-axis. Any numeric representations will be coerced to character.

Details

When `mcadjust=TRUE`, a status message of "Some time may be needed as the critical point from the `multcomp::summary.glht` function call is calculated" is displayed at the console. This computed critical point is used for all interval calculations.

The `multcomp` package provides a unified way to calculate critical points based on the comparisons of interest in a "family". Thus a user does not need to worry about choosing amongst the myriad names of multiple comparison procedures.

The `errorbargraph.cgOneFactorFit` method is only relevant for classical least squares and resistant & robust fits in the `cgOneFactorFit` object. There is an `errorbargraph` core function that could be used for approximations in other cases like accelerated failure time or unequal variance fits.

The statistical method of Andrews, Sarner, and Snee (1980) is applied to visualize significant differences via non-overlapping error bars. The method is exact when there are equal sample sizes amongst the groups for the classical least squares case. When there are unequal group sample sizes or a resistant & robust fit is used to create the graph, the method is approximate, and this is noted in the main title section of the graph. For the unequal sample sizes, the harmonic mean is calculated to use for all the groups. The method's usefulness declines as the sample sizes become more disparate.

When two groups are compared, nonoverlapping error bars indicate a statistically significant pairwise difference. Conversely, if the error bars overlap, there is no such significant difference. In cases of approximation, or borderline overlap that is seen, the `cgOneFactorComparisonsTable` object created with `type="pairwiserefloat"` or `type="pairwise"` needs to be consulted to judge significance with a p-value.

The minimum and maximum values across all the bar ends are added inside the plot region in blue, flush against the y-axis. The number of decimal places are determined by the `digits` value in the `fitDsettings` slot.

If group labels along the x-axis seem to overlap in the standard horizontal form, they will be rotated 45 degrees.

Value

`errorBarGraph.cgOneFactorFit` returns an invisible `NULL`. The main purpose is the side effect of graphing to the current device.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]
References

Examples

```r
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")

canine.fit <- fit(canine.data)
errorBarGraph(canine.fit)
errorBarGraph(canine.fit, mcadjust=TRUE, model="olsonly")
```

fit
 Fit models to data

Description

Fit data objects prepared by the cg package.

Usage

```r
fit(data, type, ...)
```

Arguments

- `data` A data object prepared with a prepare call. This will involve a data frame and additional settings.
- `type` Type of model to fit, represented by a character string.
- `...` Additional arguments, depending on the specific method written for the object.

Value

A method-specific fit object is returned. See the specific methods for discussion of return values.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.
fit.cgOneFactorData

Fit models to a cgOneFactorData object

Description

Fits a one-factor model based on the cgOneFactorData object. The created object is designed for one-factor / one-way / unpaired samples collected data, and is of class cgOneFactorFit.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

fit.cgOneFactorData

Examples

Unpaired Samples, One Factor
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data, type="rr")

data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
analysisname="cytokine",
endptname="GM-CSF (pg/ml)",
logscale=TRUE)
gmcsfcens.fit <- fit(gmcsfcens.data, type="aft")

Paired Difference
data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1, logscale=TRUE)
anorexiaFT.fit <- fit(data=anorexiaFT.data, type="rr")
Usage

```r
### S4 method for signature 'cgOneFactorData'
fit(data, type="rr", ...)
```

Arguments

- `data`: A data object of class `cgOneFactorData`.
- `type`: Type of model to fit, represented by a character value. The default value is "rr". The four current possibilities are:
 - "ols": Only fit an ordinary, classical least squares model with the base `lm` linear model function.
 - "rr": Fit a Resistant / Robust model based on M- and S-estimation, using the `rlm` function from the `MASS` package (Venables and Ripley, 2002). This is the default character value for the `type` argument. See the ... argument and Details below for what options are available when `rlm` is used in this wrapper method.
 - "aft": Fit an accelerated failure time model, using the `survreg` function from the `survival` package. If the data object has censored data and a slot state of `has.censored=TRUE`, then `type="aft"` will be set. See the ... argument and Details below for what options are used when `survreg` is used in this wrapper method; in particular, the robust argument.
 - "uv": Fit an unequal variances model, with a simple wrapper method around the `gls` from the `nlme` package. No optional arguments are passed down to `gls` through the ... argument.

... Additional arguments, both optional, that are allowed to be specified dependent on the choice of the `type` argument. Otherwise they have no effect on the fit:

- `maxIter`: If `type="rr"` or `type="aft"`, then `maxIter` can be specified as a numeric positive integer. The default value of `maxIter` is 100. For "rr", this gets passed to the `maxit` argument in the `rlm` method. For "aft", this gets passed to the `maxiter` argument in the `survreg` function.
- `sandaft`: If `type="aft"`, then `sandaft` is passed to the `robust` argument of the `survreg` function. The default value of `sandaft` is TRUE when `type="aft"`, which applies the Huber-type (1967) sandwich estimator to the variance-covariance matrix of the group estimates.

Details

In the current version of the `cg` package, most default settings for `rlm` are kept for the `fit.cgOneFactorData` method wrapper call when `type="rr"`, with no capability to choose another value for an arguments such as `psi`, `scale.est`, and `k2`. The method argument is set to "M".

Analogously most `survreg` default settings are kept for the `fit.cgOneFactorData` method wrapper call when `type="aft"`, with no capability to modify the arguments. Most notably the `dist` argument is set to "lognormal" or "gaussian", depending on whether a log scale analysis request is evident in the `cgOneFactorData` object or not, respectively.
Value

Creates an object of class cgOneFactorFit, with the following slots:

olsfit The contents of a \texttt{lm} fit to the data. This is always populated with an \texttt{lm} object no matter the choice of the type argument, even though it is certainly inappropriate in the type="aft" case.

rrfit The contents of a \texttt{rlm} fit to the data, housed as a rrfit class object. If type="rr" is not selected, then this is set to a simple character value of "No fit was selected."

aftfit The contents of a \texttt{survreg} fit to the data, with some annotations, to be a aftfit class object. If type="aft" is not selected, then this is set to a simple character value of "No fit was selected."

uvfit The contents of a \texttt{gls} fit to the data, housed as a uvfit class object. If type="uv" is not selected, then this is set to a simple character value of "No fit was selected."

settings A list of properties carried as-is from the data argument object of class \texttt{cgOneFactorData}. In particular, if zeroscore is specified as a non-NULL number in the \texttt{cgOneFactorData} object in the data argument, then a score value near zero was derived to replace all zeroes for subsequent log-scale analyses. Alternatively, if addconstant is specified as a non-NULL number in the \texttt{cgOneFactorData} object in the data argument, then a value was added to shift up all observations for subsequent log-scale analyses.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

References

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")

canine.fit <- fit(data=canine.data, type="rr")

data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
analysisname="cytokine",
endptname="Cytokine Intensity",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
gmcsfcens.fit <- fit(data=gmcsfcens.data, type="rr")


```r
# Example code

# Endpoints and log scale

endpointname = "GM-CSF (pg/ml)",
logscale = TRUE

gmcsfcens.fit <- fit(gmcsfcens.data, type = "aft")
```

fit.cgPairedDifferenceData

Fit models to a cgPairedDifferenceData object

Description

Fits a paired difference model based on the `cgPairedDifferenceData` object. The created object is designed for paired samples collected data, and is of class `cgPairedDifferenceFit`.

Usage

```r
## S4 method for signature 'cgPairedDifferenceData'
fit(data, type = "rr", ...)
```

Arguments

- **data**: A data object of class `cgPairedDifferenceData`.
- **type**: Type of model to fit, represented by a character value. The default value is "rr". The two current possibilities are:
 - "ols" Only fit an ordinary, classical least squares model with the base `lm` linear model function.
 - "rr" Fit a Resistant / Robust model based on M- and S-estimation, using the `rlm` function from the `MASS` package (Venables and Ripley, 2002). This is the default character value for the type argument. See the ... argument and Details below for what options are available when `rlm` is used in this wrapper method.
- **...**: Additional arguments, both *optional*, that are allowed to be specified dependent on the choice of the type argument. Otherwise they have no effect on the fit:
 - `maxIter` If `type = "rr"` then `maxIter` can be specified as a numeric positive integer. The default value of `maxIter` is 100. This gets passed to the `maxit` method.

Details

In the current version of the `cg` package, most default settings for `rlm` are kept for the `fit.cgPairedDifferenceData` method wrapper call when `type = "rr"`, with no capability to choose another value for an arguments such as `psi`, `scale.est`, and `k2`. The method argument is set to "MM".
Value

Creates an object of class `cgPairedDifferenceFit`, with the following slots:

- **olsfit** The contents of a `lm` fit to the data. This is always populated with an `lm` object no matter the choice of the type argument, such as `code="rr"`.
- **rrfit** The contents of a `rlm` fit to the data, housed as a `rrfit` class object. If `type="rr"` is not selected, then this is set to a simple character value of "No fit was selected.".
- **settings** A list of properties carried as-is from the data argument object of class `cgPairedDifferenceData`. In particular, if `zeroscore` is specified as a non-NULL number in the `cgPairedDifferenceData` object in the data argument, then a score value near zero was derived to replace all zeroes for subsequent log-scale analyses. Alternatively, if `addconstant` is specified as a non-NULL number in the `cgPairedDifferenceData` object in the data argument, then a value was added to shift up all observations for subsequent log-scale analyses.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

References

Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
 analysisname="Anorexia FT",
 endptname="Weight",
 endptunits="lbs",
 expunitname="Patient",
 digits=1, logscale=TRUE)
anorexiaFT.fit <- fit(data=anorexiaFT.data, type="rr")

`globalTest`

Perform a global test of significance

Description

Generic function to perform a global test of significance on a fit by the `cg` package.

Usage

`globalTest(fit, display="print", ...)"`
Arguments

fit A fit object created by a fit method from the cg package. The only class of object currently available is cgOneFactorFit, which is prepared by the fit.cgOneFactorData method.
display One of three valid values:
 "print" The default value; It calls a print method for the created globalTest object, which is formatted text output of the test p-values.
 "none" Supresses any printing. Useful, for example, when just assignment of the resulting object is desired.
 "show" Calls the default showDefault method, which will just print out the globalTest components.

... Additional arguments, depending on the specific method written for the object. See the method-specific documentation for additional details.

Value

A method-specific globalTest object is returned. See the specific methods for discussion of return values.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

globalTest.cgOneFactorFit

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
canine.globalTest <- globalTest(canine.fit)

data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
 analysisname="cytokine",
 endptname="GM-CSF (pg/ml)",
 logscale=TRUE)
globalTest.cgOneFactorFit

Perform a global Test of significance with cgOneFactorFit object

Description

Performs a global test based on the cgOneFactorFit object, to assess whether there are any significant differences amongst levels of the factor, i.e. amongst the groups. A cgOneFactorGlobalTest class object is created.

Usage

S4 method for signature 'cgOneFactorFit'

`globalTest(fit, display="print", ...)`

Arguments

- `fit` A fit object of class `cgOneFactorFit`.
- `display` One of three valid values:
 - "print" The default value; It calls a print method for the created `globalTest.cgOneFactorFit` object, which is formatted text output of the test p-values.
 - "none" Supresses any printing. Useful, for example, when just assignment of the resulting object is desired.
 - "show" Calls the default `showDefault` method, which will just print out the `globalTest.cgOneFactorFit` components.

... Additional arguments. Only one is currently valid:

- `model` For cgOneFactorFit objects that have classical least squares `lm()` or resistant & robust `rlm()` fits, the following argument values are possible:
 - "both" Global tests on both the ordinary classical least squares and resistant robust fits are performed. This is the default when both fits are present in the cgOneFactorFit object specified in the `fit` argument.
 - "olsonly" Only a global test on the ordinary classical least squares `olsfit` fit is performed.
 - "rronly" Only a global test on the resistant and robust `rrfit` fit is performed.

For other possible cgOneFactorFit fit components such as accelerated failure time or unequal variance models, the `model` argument is not relevant, and the appropriate global test will be detected and performed for these model types.
Details

The notion of a global F test, or equivalently, of R^2, for resistant & robust linear models is murky, as no clear theoretical analogue to the ordinary classical least squares approach exists. The approach taken here is ad-hoc, which is essentially to re-fit a linear model with `lm()` and weights from the resistant & robust fit. This ad-hoc approach is taken when there are 3 or more groups.

If there are only 2 groups, then the `comparisonsTable.cgOneFactorFit` method is used with the `r1m()` model component.

Value

Creates an object of class `cgOneFactorGlobalTest`, with the following slots:

- `ols_gpval` The p-value of a global F test applied to the `olsfit` component of the `cgOneFactorFit` object, unless `model="rronly"` is specified. Will not be appropriate in the case where a valid `aftfit` component is present in the `cgOneFactorFit` object.
- `rr_gpval` The p-value of an ad-hoc global test applied to the `rrfit` component of the `cgOneFactorFit` object, if a valid resistant & robust fit object is present. See the Details section above. If `rrfit` is a simple character value of "No fit was selected.", or model="olsonly" was specified, then the value is `null`.
- `aft_gpval` The p-value of a global chi-square test applied to the `aftfit` component of the `cgOneFactorFit` object if a valid accelerated failure time fit object is present. If `aftfit` is a simple character value of "No fit was selected.", then the value is `null`.
- `uv_gpval` The p-value of a global F test applied to the `uvfit` component of the `cgOneFactorFit` object if a valid unequal variances fit object is present.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
canine.globalTest <- globalTest(canine.fit)
globalTest(canine.fit, model="both")
globalTest(canine.fit, model="olsonly")
globalTest(canine.fit, model="rronly")

data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
analysisname="cytokine",
endptname="GM-CSF (pg/ml)",
logscale=TRUE)

gmcsfcens.fit <- fit(gmcsfcens.data, type="aft")

globalTest(gmcsfcens.fit)

gmcsfcens

A 8-by-6 data frame with up to 8 numeric observations per group from an experiment on the following 6 groups.

PBS/Tg 197 phosphate buffered saline control group

1mg/kg/Tg 197 1 mg/kg dose

3mg/kg/Tg 197 3 mg/kg dose

10/mg/kg/Tg 197 10 mg/kg dose

30/mg/kg/Tg 197 30 mg/kg dose

PBS/WT phosphate buffered saline control group of wild-type mice

The first five groups have transgenic (Tg197) mice subjects, a well established model to induce arthritis. The sixth group are "wild-type" mice that did not have arthritis induced. The various doses of the inner four groups are administrations of golimumab, a monoclonal antibody therapy.

The individual group values are of mode character, since some of them are represented as left-censored values such as `<82.5`. Note that two of the groups have less than 8 observations, and the corresponding cells in the data frame actually contain empty quote "" values.

Description

A data frame used to illustrate the cg package. It has a One Factor / One-Way / Unpaired Samples layout. It also contains left-censored values of varying degree in each of the six groups.

Usage

data(gmcsfcens)

Format

A 8-by-6 data frame with up to 8 numeric observations per group from an experiment on the following 6 groups.

PBS/Tg 197 phosphate buffered saline control group

1mg/kg/Tg 197 1 mg/kg dose

3mg/kg/Tg 197 3 mg/kg dose

10/mg/kg/Tg 197 10 mg/kg dose

30/mg/kg/Tg 197 30 mg/kg dose

PBS/WT phosphate buffered saline control group of wild-type mice

Note that two of the groups have less than 8 observations, and the corresponding cells in the data frame actually contain empty quote "" values.
Details

The `gmcsfcens` data set that comes with the `cg` package is in `groupcolumns` format. Each column represents a group, and the observations in that group’s column are the individual response values. As described above, they are character valued potentially left-censored representations.

The 6 groups are regarded as levels of one factor in the `prepareCGOneFactorData`, `fit`, and other methods in the `cg` package.

Alternative formats of this data set is contained in `gmcsfcens.listfmt`. See that help file for details, including how such formats would be read and prepared by `cg`.

GM-CSF stands for Granulocyte macrophage colony stimulating factor, a type of cytokine that is important in the growth of white blood cells. It is one of the outcomes measured in the experiment described in the references section below. Therapeutic inhibition of it may be beneficial in cases where too many white blood cells are produced, such as arthritis. In other situations where white blood cell counts are low, stimulation of it is desired. In the referenced study below, GM-CSF is evaluated in the context of inflammation.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

References

See Also

`gmcsfcens.listfmt`, `prepareCGOneFactorData`

Examples

```r
data(gmcsfcens)
str(gmcsfcens)
```

```r

gmcsfcens.listfmt GM-CSF censored data set in the cg package
```

Description

A data frame used to illustrate the `cg` package. It has a One Factor / One-Way / Unpaired Samples layout. It also contains left-censored values of varying degree in each of the six groups. There are three equivalent data frame versions documented here.
Usage

data(gmcsfcens.listfmt1)
data(gmcsfcens.listfmt2)
data(gmcsfcens.listfmt3)

Format

A 45 row data frame with up to 8 observations per group from an experiment on the following 6 groups.

PBS/Tg 197 phosphate buffered saline control group
1mg/kg/Tg 197 1 mg/kg dose
3mg/kg/Tg 197 3 mg/kg dose
10/mg/kg/Tg 197 10 mg/kg dose
30/mg/kg/Tg 197 30 mg/kg dose
PBS/WT phosphate buffered saline control group of wild-type mice

The first five groups have transgenic (Tg197) mice subjects, a well established model to induce arthritis. The sixth group are "wild-type" mice that did not have arthritis induced. The various doses of the inner four groups are administrations of golimumab, a monoclonal antibody therapy. There can be either 2, 3, or 4 columns in the data frame. The above 6 items are the levels of the first column's factor, named \texttt{grp}.

2 columns The data frame name is \texttt{gmcsfcens.listfmt1}. The second column \texttt{endpt} contains the character observations that can represent complete observations, and also left- or right-censored ones, in the same way that \texttt{gmcsfcens} does.

3 columns The data frame name is \texttt{gmcsfcens.listfmt2}. The second column \texttt{endpt} contains numeric observations, and the third column \texttt{status} indicates whether the observation is complete/not censored (1), and 0 if left-censored. See \texttt{prepareCGOneFactorData} for the explanation of why the value of 0 and not 2 is required. In the example code below, the \texttt{leftcensor=TRUE} argument needs to be specified when this format version is used.

4 columns The data frame name is \texttt{gmcsfcens.listfmt3}. The second and third columns \texttt{endpt1} and \texttt{endpt2} contain numeric observations, and the fourth column \texttt{status} indicates whether the observation is complete/not censored (1), and 2 if left-censored. See \texttt{prepareCGOneFactorData} for the explanation of this format, and the example code below.

Details

The \texttt{gmcsfcens.listfmt*} data sets that comes with the \texttt{cg} package are in a "listed" format, detailed below.

The 6 groups are regarded as levels of one factor in the \texttt{prepareCGOneFactorData}, \texttt{fit}, and other methods in the \texttt{cg} package.

The \texttt{gmcsfcens.listfmt} data sets are alternative formats of the \texttt{gmcsfcens} data set. See that help file for details. Once a \texttt{gmcsfcens.listfmt} data set is \texttt{prepared} into a \texttt{cgOneFactorData} object, all the subsequent methods work on the object in the same way.
GM-CSF stands for Granulocyte macrophage colony stimulating factor, a type of cytokine that is important in the growth of white blood cells. It is one of the outcomes measured in the experiment described in the references section below. Therapeutic inhibition of it may be beneficial in cases where too many white blood cells are produced, such as arthritis. In other situations where white blood cell counts are low, stimulation of it is desired. In the referenced study below, GM-CSF is evaluated in the context of inflammation.

Note
Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

References

See Also
gmcsfcens, prepareCGOneFactorData

Examples

data(gmcsfcens.listfmt1)
str(gmcsfcens.listfmt1)

data(gmcsfcens.listfmt2)
str(gmcsfcens.listfmt2)

data(gmcsfcens.listfmt3)
str(gmcsfcens.listfmt3)

Analogous to prepareCGOneFactorData call on gmcsfcens data frame format,
subsequent methods will work for gmcsfcens.listfmt.data objects below:

leftcensor argument can be left as default NULL
gmcsfcens.listfmt1.data <- prepareCGOneFactorData(gmcsfcens.listfmt1, format="listed",
 analysisname="cytokine",
 endpointname="GM-CSF (pg/ml)",
 logscale=TRUE)

leftcensor=TRUE argument needs to be set
gmcsfcens.listfmt2.data <- prepareCGOneFactorData(gmcsfcens.listfmt2, format="listed",
 analysisname="cytokine",
 endpointname="GM-CSF (pg/ml)",
 logscale=TRUE,
 leftcensor=TRUE)

leftcensor argument can be left as default NULL
gmcsfcens.listfmt3.data <- prepareCGOneFactorData(gmcsfcens.listfmt3, format="listed",
 analysisname="cytokine",
 endpointname="GM-CSF (pg/ml)",
 logscale=TRUE,
 leftcensor=TRUE)
Description
Create a table of estimated group means based on a fit by the \text{cg} package.

Usage

```r
grpSummaryTable(fit, mcadjust = FALSE, alpha = 0.05, display = "print", ...)
```

Arguments

- **fit**: An fit object created with a \text{fit} method from the \text{cg} package. The only class of object currently available is \text{cgOneFactorFit}, which is prepared by the \text{fit.cgOneFactorData} method.

- **mcadjust**: Do a multiple comparisons adjustment, based on the simultaneous inference capabilities of the \text{multcomp} package. See Details below. The default value is FALSE. If \text{mcadjust=TRUE} is specified, there will be a delay, usually just for a few seconds, due to computing time of the critical point in order to conduct the adjusted comparisons.

- **alpha**: Significance level, by default set to 0.05.

- **display**: One of three valid values:
 - "print" The default value; It calls a \text{print} method for the created \text{cgOneFactorGrpSummaryTable} object, which is a formatted text output of the table(s).
 - "none" Supresses any printing. Useful, for example, when just assignment of the resulting object is desired.
 - "show" Calls the default \text{showDefault} method, which will just print out the \text{grpSummaryTable} object components.

- **...**: Additional arguments, depending on the specific method written for the object. Currently, there is only one such specific method; see \text{grpSummaryTable.cgOneFactorFit} for any additional arguments that can be specified.
Details

When mcadjust=TRUE, a status message of "Some time may be needed as the critical point" "from the multcomp::summary.glht function call is calculated" is displayed at the console. This computed critical point is used for all subsequent p-value and confidence interval calculations.

Value

A method-specific grpSummaryTable object is returned. See the specific methods for discussion of return values.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

References

See Also

grpSummaryTable.cgOneFactorFit

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
canine.grpsumm <- grpSummaryTable(canine.fit)

data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
 analysisname="cytokine",
 endptname="GM-CSF (pg/ml)",
 logscale=TRUE)
gmcsfcens.fit <- fit(gmcsfcens.data, type="aft")
Create a table of estimated group means and variability with a `cgOneFactorFit` object.

Arguments
- `fit`: A fit object of class `cgOneFactorFit`.
- `mcadjust`: Do a multiple comparisons adjustment, based on the simultaneous inference capabilities of the `multcomp` package. See Details below. The default value is `FALSE`. If `mcadjust=TRUE` is specified, there will be a delay, usually just for a few seconds, due to computing time of the critical point in order to calculate the confidence intervals.
- `alpha`: Significance level, by default set to `0.05`.
- `display`: One of three valid values:
 - "print": The default value; It calls a `print` method for the created `cgOneFactorGrpSummaryTable` object, which is a formatted text output of the table(s).
 - "none": Supresses any printing. Useful, for example, when just assignment of the resulting object is desired.
 - "show": Calls the default `showDefault` method, which will just print out the `cgOneFactorGrpSummaryTable` components.
- `model`: For `cgOneFactorFit` fit objects that have classical least squares `lm()` or resistant & robust `rlm()` fits, the following argument values are possible:
 - "both": Group summary tables based on both the ordinary classical least squares and resistant & robust fits are performed. This is the default when both fits are present in the `cgOneFactorFit` object specified in the `fit` argument. If the resistant & robust fit is not available, this value is not relevant.
"olsonly" Only a group summary table based on the ordinary classical least squares olsfit fit is performed.

"rronly" Only a group summary table based on the resistant and robust rrfit fit is performed.

For other possible cgOneFactorFit fit components such as accelerated failure time or unequal variance models, the model argument is not relevant, and the appropriate group summary table will be calculated for these model types.

Details

When mcadjust=TRUE, a status message of "Some time may be needed as the critical point from the multcomp::summary.glht function call is calculated" is displayed at the console. This computed critical point is used for all subsequent p-value and confidence interval calculations.

The multcomp package provides a unified way to calculate critical points based on the comparisons of interest in a "family". Thus a user does not need to worry about choosing amongst the myriad names of multiple comparison procedures.

Value

Creates an object of class cgOneFactorGrpSummaryTable, with the following slots:

ols.grps The table of group estimates based on the olsfit component of the cgOneFactorFit, unless model="rronly" is specified. In that case the slot value is NULL. Will not be appropriate in the case where a valid aftfit component is present in the cgOneFactorFit object. See below for the data frame structure of the table.

rr.grps The table of group estimates based on the rrfit component of the cgOneFactorFit object, if a valid resistant & robust fit object is present. If rrfit is a simple character value of "No fit was selected.", or model="olsonly" was specified, then the value is NULL. See below for the data frame structure of the table.

aft.grps The table of group estimates based on the aftfit component of the cgOneFactorFit object if a valid accelerated failure time fit object is present. If aftfit is a simple character value of "No fit was selected.", then the value is NULL. See below for the data frame structure of the table.

uv.grps The table of group estimates based on the uvfit component of the cgOneFactorFit object if a valid unequal variances fit object is present. If uvfit is a simple character value of "No fit was selected.", then the value is NULL. See below for the data frame structure of the table.

settings A list of settings carried from the cgOneFactorFit fit object, and the addition of some specified arguments in the method call above: alpha and mcadjust. These are used for the print.cgOneFactorGrpSummaryTable method, invoked for example when display="print".

The data frame structure of the comparisons table in a *.comprs slot consists of row.names that specify group name (factor level), and these columns:

estimate The estimated group mean. If settings$endptscale="log" in the fit object, this will be back-transformed to a geometric mean.
The estimated standard error of the group mean estimate. If `settings$endptscale="log"` in the fit object, this estimate will be based on the Delta method, and will begin to be a poor approximation when the standard error in the logscale exceeds 0.50.

The lower 100 *(1-alpha) % confidence limit of the group mean estimate. With the default `alpha=0.05`, this is 95%. If `settings$endptscale="log"` in the fit object, the confidence limit is first computed in the logarithmic scale of analysis, and then back-transformed to the original scale.

The upper 100 *(1-alpha) % confidence limit of the difference estimate. With the default `alpha=0.05`, this is 95%. If `settings$endptscale="log"` in the fit object, the confidence limit is first computed in the logarithmic scale of analysis, and then back-transformed to the original scale.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

References

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns", analysisname="Canine", endptname="Prostate Volume", endptunits=expression(plain(cm)^3), digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
grpSummaryTable(canine.fit)
grpSummaryTable(canine.fit, mcadjust=TRUE, model="olsonly")

data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns", analysisname="cytokine", endptname="GM-CSF (pg/ml)", logscale=TRUE)
gmcsfcens.fit <- fit(gmcsfcens.data, type="aft")
Description

Create non-parametric survival or cumulative distribution graphs based on a data object in the cg package.

Usage

```
kmGraph(data, cgtheme = TRUE, distfcn = "survival", ylab = NULL,
title = NULL, ...)
```

Arguments

- **data**: A data object created using the cg package. The only class of object currently available is `cgOneFactorData`, which is created by the `prepareCGOneFactorData` function.
- **cgtheme**: When set to the default TRUE, ensures a trellis device is active with limited color scheme, namely background, strip.shingle, and strip.background are each set to "white".
- **distfcn**: A character, which may be either "survival" to graph the survival function, or "cumulative" to graph the cumulative distribution function.
- **ylab**: Specify a character value for the y-axis label. The default value is NULL.
- **title**: Specify a character value for the main title at the top of the graph. The default value is NULL.
- **...**: Additional arguments, depending on the specific method written for the object. Currently, there is only one such specific method; see `kmGraph.cgOneFactorData` for any additional arguments that can be specified.

Details

Color assignments of the graphed step functions lines for the groups match the order of the group name factor levels. The color order is given in `cgLineColors`. The line widths are set to be thicker (lwd=2), and the group name label is placed near the line using `label` methodology from the Hmisc package.

The x-axis represents response values, and y-axis represents estimated probabilities. Minimum and maximum values from ranges of data are respectively labeled in the bottom left and right corners of graph regions.

Value

The main purpose is the side effect of graphing to the current device. See the specific methods for discussion of any return values.
kmGraph.cgOneFactorData

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

kmGraph.cgOneFactorData

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")

kmGraph(canine.data, distfcn="cumulative")
kmGraph(canine.data, distfcn="cumulative",
ticklabels=list(mod="add", marks=c(2)))

Censored Data
data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
analysisname="cytokine",
endptname="GM-CSF (pg/ml)",
logscale=TRUE)

kmGraph(gmcsfcens.data, distfcn="cumulative")
kmGraph(gmcsfcens.data, distfcn="cumulative", logscale=FALSE)

kmGraph.cgOneFactorData

Graph Distribution Functions of Groups in a cgOneFactorData object

Description

Create a non-parametric survival or cumulative distribution graph of groups of data in a cgOneFactorData object.

Usage

S4 method for signature 'cgOneFactorData'
kmGraph(data, cgtheme = TRUE, distfcn = "survival",
ylab = NULL, title = NULL, ...)
Arguments

data A cgOneFactorData object.

cgtheme A logical value, indicating whether to use the cg limited color scheme (white backgrounds, including shingles) or the current Trellis color scheme. The default is TRUE.

distfcn A character value, which may be either the default "survival" to graph the survival function, or "cumulative" to graph the cumulative distribution function.

ylab Optional, a character value to label the y-axis of the graph. If NULL, it defaults to either "Probability of Survival" or "Cumulative Probability", depending on the value of distfcn.

title Optional, a character to show as the title of the graph. If NULL, it defaults to either "Nonparametric Survival Curve Estimates" or "Nonparametric Cumulative Distribution Function Estimates", depending on the value of distfcn.

Additional arguments. One is currently valid:

ticklabels A list of two components:
 mod Can be either of these two values,
 "replace" Before graphing the data, remove any automatically generated tickmarks for the x-axis, and create the tickmarks specified in the marks component below.
 "add" Before graphing the data, add tickmarks specified in the marks component below, to the automatically generated ones.
 marks A vector of tickmarks to be placed on the x-axis. Any numeric representations will be coerced to character.

Details

Graph the estimated survival function or cumulative distribution for each group in a cgOneFactorData object. For censored data, Kaplan-Meier estimates are used. For uncensored data, the conventional step function empirical estimates are used.

Color assignments of the graphed step functions lines for the groups match the order of the group name factor levels. The color order is given in cgLineColors. The line widths are set to be thicker (lwd=2), and the group name label is placed near the line using label methodology from the Hmisc package.

The x-axis represents response values, and y-axis represents estimated probabilities. Minimum and maximum values from ranges of data are respectively labeled in the bottom left and right corners of graph regions.

The label for the x-axis is taken from the cgOneFactorData object, which prepareCGOneFactorData sets from its endptname and endptunits arguments.

The number of decimal places printed in the ticks on the x-axis is taken from the cgOneFactorData object, which prepareCGOneFactorData sets from its digits argument.
Value

kmGraph.cgOneFactorFit returns an invisible NULL. The main purpose is the side effect of graphing to the current device.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns", analysisname="Canine", endptname="Prostate Volume", endptunits=expression(plain(cm)^3), digits=1, logscale=TRUE, refgrp="CC")

kmGraph(canine.data, distfcn="cumulative")
kmGraph(canine.data, distfcn="cumulative", ticklabels=list(mod="add", marks=c(2)))

Censored Data
data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns", analysisname="cytokine", endptname="GM-CSF (pg/ml)", logscale=TRUE)

kmGraph(gmcsfcens.data, distfcn="cumulative")
kmGraph(gmcsfcens.data, distfcn="cumulative", logscale=FALSE)

pointGraph

Graph Individual Data Points of Groups

Description

Generic function to create point graphs (a.k.a. dot plot, strip plot, one-dimensional scatter plot) of a data object created by the cg package.

Usage

pointGraph(data, ...)

Arguments

data

A data object created with a prepare function or method from the cg package. The only class of object currently valid is cgOneFactorData, which is created by the prepareCGOneFactorData function.

Additional arguments, depending on the specific method written for the object. Currently, there is only one such specific method; see pointGraph.cgOneFactorData for any additional arguments that can be specified.

Details

Individual points are jittered, and open circles are used to alleviate potential overlap and the danger of representing multiple points as a single point.

The point graph is a vertical dot plot or strip plot, with separate areas for each group in the data set, and light gray lines between the groups. For censored data, left-censored values are shown as a shallow "V", which is actually just a rotated downward "<" sign. Similarly, right-censored values are shown as a deeper "^", which is a rotated upward ">" sign.

Minimum and maximum values from ranges of data are respectively labeled in the bottom and top left corners of graph regions.

Tick marks are attempted to be chosen wisely. For log-scaled axes in particular, leading digits of 2, 5, and 10 for values are included if possible. Since the algorithm is empirical, the ticklabels argument is available for further refinement or complete replacement of tickmarks.

Value

The main purpose is the side effect of graphing to the current device. See the specific methods for discussion of any return values.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

pointGraph.cgOneFactorData

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")

pointGraph(canine.data)
pointGraph.cgOneFactorData

Graph Individual Data Points in a cgOneFactorData object

Description

Create a point graph (a.k.a. dot plot, strip plot, one-dimensional scatter plot) of the data in a cgOneFactorData object.

Usage

```r
## S4 method for signature 'cgOneFactorData'
pointGraph(data, ...)
```

Arguments

- **data** A `cgOneFactorData` object.
- **...** Additional arguments, both optional. Two are currently valid:
 - **logscale** A logical value, indicating whether or not the point graph should be plotted on the logarithmic scale. If `logscale` is not specified, its value is taken from the `cgOneFactorData` object, which `prepareCGOneFactorData` sets from its `logscale` argument.
 - **ticklabels** A list of two components:
 - **mod** Can be either of these two values, "replace" Before graphing the data, remove any automatically generated tickmarks for the y-axis, and create the tickmarks specified in the `marks` component below.
 - "add" Before graphing the data, add tickmarks specified in the `marks` component below, to the automatically generated ones.
 - **marks** A vector of tickmarks to be placed on the y-axis. Any numeric representations will be coerced to character.
Details

If logscale=TRUE, the tick marks for the y-axis on the left side of the plot show original values, while the tick marks for the y-axis on the right side of the graph show base 10 log values.

Tick marks are attempted to be chosen wisely. For log-scaled axes in particular, leading digits of 2, 5, and 10 for values are included if possible. Since the algorithm is empirical, the ticklabels argument is available for further refinement or complete replacement of tickmarks.

Individual points are jittered, and open circles are used to alleviate potential overlap and the danger of representing multiple points as a single point.

The point graph is a vertical dot plot or strip plot, with separate areas for each group in the data set, and light gray lines between the groups. For censored data, left-censored values are shown as a shallow "V", which is actually just a rotated downward "<" sign. Similarly, right-censored values are shown as a deeper "^", which is a rotated upward ">" sign.

The heading for the graph is taken from the cgOneFactorData object, which prepareCGOneFactorData sets from its analysisname argument.

The label for the y-axis is taken from the cgOneFactorData object, which prepareCGOneFactorData sets from its endptname and endptunits arguments.

The number of decimal places printed in the ticks on the y-axis is taken from the cgOneFactorData object, which prepareCGOneFactorData sets from its digits argument.

The minimum and maximum values from the range of the data are respectively labeled in the bottom and top left corners of the graph region.

If group labels along the x-axis seem to overlap in the standard horizontal form, they will be rotated 45 degrees.

Value

pointGraph.cgOneFactorData returns an invisible NULL. The main purpose is the side effect of graphing to the current device.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)*3),
 digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
pointGraph(canine.data)
Graph the data on the original scale instead of the log scale.
pointGraph(canine.data, logscale=FALSE)

Censored Data

data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
 analysisname="cytokine",
 endptname="GM-CSF (pg/ml)",
 logscale=TRUE)

pointGraph(gmcsfcens.data)

prepare

Prepare a cg data object from a data frame

Description

Reads in a data frame and settings in order to create a cg Data object.

Usage

```r
prepare(type, ...)```

**Arguments**

- **type**
  
  Values and synonyms to create a cg data object. For one factor / unpaired samples, either "onefactor" or "unpairedgroups" can be specified. For paired samples, either "paireddifference" or "pairedgroups" can be used. Partial matching also allows shortened forms such as "unpaired" or "paireddiff".

- **...**
  
  Depends on the specific function that is called according to the type argument. For current valid calls, no ... arguments are used.

**Value**

See `cgOneFactorData` and `cgPairedDifferenceData` for possible valid objects that are created, dependent on the type and ... arguments that are correctly specified.

**Note**

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

**Author(s)**

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

**See Also**

`prepareCGOneFactorData`, `prepareCGPairedDifferenceData`
Examples

data(canine)
canine.data <- prepare(type="unpairedgroups", dfr=canine,
 format="groupcolumns", analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")

## Censored Data
data(gmcsfcens)
gmcsfcens.data <- prepare(type="onefactor",
 dfr=gmcsfcens, format="groupcolumns",
 analysisname="cytokine",
 endptname="GM-CSF (pg/ml)",
 logscale=TRUE)

## Paired Groups
data(anorexiaFT)
anorexiaFT.data <- prepare(type="paireddiff", ## Partial matching
 dfr=anorexiaFT, format="groupcolumns",
 analysisname="Anorexia FT",
 endptname="Weight",
 endptunits="lbs",
 expunitname="Patient",
 digits=1, logscale=TRUE)

prepareCGOneFactorData

Prepare data object from a data frame for One Factor / One-Way / Unpaired Samples evaluations

Description

The function prepareCGOneFactorData reads in a data frame and settings in order to create a cgOneFactorData object. The created object is designed to have exploratory and fit methods applied to it.

Usage

prepareCGOneFactorData(dfr, format = "listed", analysisname = "", endptname = ", endptunits = ", logscale = TRUE, zeroscore = NULL,
 addconstant = NULL, rightcensor = NULL, leftcensor = NULL, digits = NULL,
 refgrp = NULL, stamps = FALSE)

Arguments

dfr A valid data frame, see the format argument.
format

Default value of "listed". Either "listed" or "groupcolumns" must be used. Abbreviations of "1" or "g", respectively, or otherwise sufficient matching values can be used:

"listed"  At least two columns, with the factor levels in the first column and response values in the second column. If there is censored data, then two or three more columns are required, see the Details Input Data Frame section below.

"groupcolumns"  Each column must represent a group. Each group is a unique level of the one factor, so the levels of the factor make up the column headers. The values in the data frame are for the response. If the groups have unequal sample sizes, the empty cells within the data frame can have NA’s or be left blank. Censored values can be represented; see the Details Input Data Frame section below. Otherwise, any character data will be coerced to numeric data with possibly undesirable results.

analysisname

Optional, a character text or math-valid expression that will be set for default use in graph title and table methods. The default value is the empty "".

defaultname

Optional, a character text or math-valid expression that will be set for default use as the y-axis label of graph methods, and also used for table methods. The default value is the empty "".

defaultunits

Optional, a character text or math-valid expression that can be used in combination with the endptname argument. Parentheses are automatically added to this input, which will be added to the end of the endptname character value or expression. The default value is the empty "".

logscale

Apply a log-transformation to the data for evaluations. The default value is TRUE.

zeroscore

Optional, replace response values of zero with a derived or specified numeric value, as an approach to overcome the presence of zeroes when evaluation in the logarithmic scale (logscale=TRUE) is specified. The default value is NULL. To derive a score value to replace zero, "estimate" can be specified, see Details below on the algorithm used.

addconstant

Optional, add a numeric constant to all response values, as an approach to overcome the presence of zeroes when evaluation in the logarithmic scale logscale=TRUE is desired. The default value is NULL. Positive numeric value can be specified to be added, or a "simple" algorithm specified to estimate a value to add. See Details section below on the algorithm used.

rightcensor

Optional, can be specified with a numeric value where any value equal to or greater will be regarded as right censored in the evaluation. The value of TRUE can be used to coerce a binary status variable in the data frame to be right censored for its values. The default value is NULL. See the Details Input Data Frame section below for specifications and consequences.

leftcensor

Optional, can be specified with a numeric value where any value equal to or lesser will be regarded as left censored in the evaluation. The value of TRUE can be used to coerce a binary status variable in the data frame to be right censored for its values. The default value is NULL. See the Details Input Data Frame section below for specifications and consequences.
prepareCGOneFactorData

digits  *Optional*, for output display purposes in graphs and table methods, values will be rounded to this numeric value. Only the integers of 0, 1, 2, 3, and 4 are accepted. No rounding is done during any calculations. The default value is NULL, which will examine each individual data value and choose the one that has the maximum number of digits after any trailing zeroes are ignored. The max number of digits will be 4.

refgrp  *Optional*, specify one of the factor levels to be the “reference group”, such as a “control” group. The default value is NULL, which will just use the first level determined in the data frame.

stamps  *Optional*, specify a time stamp in graphs, along with cg package version identification. The default value is FALSE.

Details

**Input Data Frame**  The input data frame dfr can be of the format "listed" or "groupcolumns". Another distinguishing characteristic is whether or not it contains censored data representations.

Censored observations can be represented by < for left-censoring and > for right-censoring. The < value refers to values less than or equal to a numeric value. For example, <0.76 denotes a left-censored value of 0.76 or less. Similarly, >2.02 denotes a value of 2.02 or greater for a right-censored value. There must be no space between the direction indicator and the numeric value. These representations can be used in either the listed or groupcolumns formats for dfr.

No interval-censored representations are currently handled when format="groupcolumns".

If format="groupcolumns" for dfr is specified, then the number of columns must equal the number of groups, and any censored values must follow the < and > representations. The individual group values are of mode character, since any censored values will be represented for example as <0.76 or >2.02. If any of the groups have less number of observations than any others, i.e. there are unequal sample sizes, then the corresponding "no data" cells in the data frame need to contain empty quote "" values.

If format="listed" for dfr is specified, then there may be anywhere from two to four columns for an input data frame.

**two columns**  The first column has the group levels to define the factor, and the second column contains the response values. Censored representations of < and > can be used here. One or both of rightcensor or leftcensor may also be specified as a number. If a number is specified for rightcensor, then all values in the second column equal to this value will be processed as right-censored. Analogously, if a number is specified for leftcensor, then all values in the second column equal to this value will be processed as left-censored. **WARNING:** This should be used cautiously to make sure the equality occurs as desired. This convention is designed for simple Type I censoring scenarios.

**three columns**  Like the two column case, the first column has the group levels to define the factor, and the second column contains the response values, which will all be coerced to numeric. Any censoring information must be specified in the third column. Borrowing the convention of Surv from the survival package, 0=right censored, 1=no censoring, and 2=left censored. If rightcensor=NULL and leftcensor=NULL are left as defaults in the call, and values of 0, 1, and 2 are all represented, then the processing will create a suitable data frame dfru for modeling that the canonical survreg function understands.
However, if 0 and 1 are the only specified values in the third censoring status column, then one of rightcensor=TRUE or leftcensor=TRUE must be specified, but NOT both, or an error message will occur. A column of all 1’s or all 0’s will also raise an error message.

**Four columns** Like the two column case, the first column has the group levels to define the factor. The second and third columns need to have numeric response information, and the fourth column needs to have censoring status. This is the most general representation, where any combination of left-censoring, right-censoring, and interval-censoring is permitted. The rightcensor and leftcensor input arguments are ignored and set to NULL. **IMPORTANT:** The convention of Surv from the survival package, 0=right censored, 1=no censoring, and 2=left censored, 3=interval censored, and type="interval", is followed. For status=0, 1, and 2, the second and third columns match in value, so that the status variable in the fourth column distinguishes the lower and upper bounds for the right-censored (0) and left-censored (2) cases. For status=3, the two values differ to define the interval boundaries. The processing will create a suitable data frame dfru for modeling that the canonical survreg and survfit functions from the survival package understand.

**zeroscore** If zeroscore="estimate" is specified, a number close to zero is derived to replace all zeroes for subsequent log-scale analyses. A spline fit (using spline and method="natural") of the log of the response vector on the original response vector is performed. The zeroscore is then derived from the log-scale value of the spline curve at the original scale value of zero. This approach comes from the concept of arithmetic-logarithmic scaling discussed in Tukey, Ciminera, and Heyse (1985).

**addconstant** If addconstant="simple" or addconstant="VR" is specified, a number is derived and added to all response values.

"simple" Taken from the "white" book on S (Chambers and Hastie, 1992), page 68. The range (max M min) of the response values is multiplied by 0.0001 to derive the number to add to all the response values.

"VR" Based on the logtrans function discussed in Venables and Ripley (2002), pages 171-172 and available in the MASS package. The algorithm applies a Box-Cox profile likelihood approach with a log scale translation model.

**Value**

A cgOneFactorData object is returned, with the following slots:

- **dfr** The original input data frame that is the specified value of the dfr argument in the function call.
- **dfru** Processed version of the input data frame, which will be used for the various evaluation methods.
- **fmt.dfru** A list version of the input data frame, which will only differ from the dfr value if the input data frame was specified in the groupcolumns format.
- **has.censored** Boolean TRUE or FALSE on whether there are any censored data observations.
- **settings** A list of properties associated with the data frame:
  - analysisname Drawn from the input argument value of analysisname.
  - endptname Drawn from the input argument value of endptname.
endptunits Drawn from the input argument value of endptunits.
endptscale Has the value of "log" if logscale=TRUE and "original" if
logscale=FALSE.
zeroscore Has the value of NULL if the input argument was NULL. Otherwise
has the derived (from zeroscore="estimate") or specified numeric value.
addeconstant Has the value of NULL if the input argument was NULL. Otherwise
has the specified numeric value.
rightcensor Has the value of the input argument rightcensor or is set to
NULL if no censored observations are determined.
leftcensor Has the value of the input argument leftcensor or is set to NULL
if no censored observations are determined.
digits Has the value of the input argument digits or is set to the determined
value of digits from the input data. Will be an integer of 0, 1, 2, 3, or 4.
grpnames Determined from the single factor identified of the group names. The
order is determined by their first occurrence in the input data frame dfr.
refgrp Drawn from the input argument of refgrp.
stamps Drawn from the input argument of stamps.

Note
Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

References
Springer.

See Also
Surv, canine, gmcscens, prepare

Examples
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")

## Censored Data
prepareCGPairedDifferenceData

Prepare data object from a data frame for Paired Samples evaluations

Description

The function prepareCGPairedDifferenceData reads in a data frame and settings in order to create a cgPairedDifferenceData object. The created object is designed to have exploratory and fit methods applied to it.

Usage

```r
prepareCGPairedDifferenceData(dfr, format = "listed", analysisname = "", endptname = "", endptunits = "", logscale = TRUE, zeroscore = NULL, addconstant = NULL, digits = NULL, expunitname= "", refgrp = NULL, stamps = FALSE)
```

Arguments

dfr
A valid data frame, see the format argument.

format
Default value of "listed". Either "listed" or "groupcolumns" must be used. Abbreviations of "l" or "g", respectively, or otherwise sufficient matching values can be used:

"listed" At least two columns, with the two and only two levels of a factor to represent the samples. These factor levels would need to be in the first column and response values in the second column. If there are three columns, then an experimental unit identifier need to be defined in the first column instead, with the second column having the two level factor, and the third column having the response values. See the Details Input Data Frame section below.

"groupcolumns" At least two columns and no more than three are permitted. In the two columns case, each column must uniquely represent one of the two samples, implying a factor with two and only two levels. The levels of the factor make up the column headers. The values in the data frame are for the response. Each row assumes the pairing of the observation within an experimental unit, such as the same subject. If there are three columns, then an experimental unit identifier need to be defined in the first column instead, with the second and third column having the response values and headers to represent the two factor levels. See the Details Input Data Frame section below.
prepareCGPairedDifferenceData

**analysisname**
*Optional*, a character text or math-valid expression that will be set for default use in graph title and table methods. The default value is the empty "".

**endptname**
*Optional*, a character text or math-valid expression that will be set for default use as the y-axis label of graph methods, and also used for table methods. The default value is the empty "".

**endptunits**
*Optional*, a character text or math-valid expression that can be used in combination with the endptname argument. Parentheses are automatically added to this input, which will be added to the end of the endptname character value or expression. The default value is the empty "".

**logscale**
Apply a log-transformation to the data for evaluations. The default value is TRUE.

**zeroscore**
*Optional*, replace response values of zero with a derived or specified numeric value, as an approach to overcome the presence of zeroes when evaluation in the logarithmic scale (logscale=TRUE) is specified. The default value is NULL. To derive a score value to replace zero, "estimate" can be specified, see Details below on the algorithm used.

**addconstant**
*Optional*, add a numeric constant to all response values, as an approach to overcome the presence of zeroes when evaluation in the logarithmic scale logscale=TRUE is desired. The default value is NULL. A positive numeric value can be specified to be added, or a "simple" algorithm specified to estimate a value to add. See Details section below on the algorithm used.

**digits**
*Optional*, for output display purposes in graphs and table methods, values will be rounded to this numeric value. Only the integers of 0, 1, 2, 3, and 4 are accepted. No rounding is done during any calculations. The default value is NULL, which will examine each individual data value and choose the one that has the maximum number of digits after any trailing zeroes are ignored. The max number of digits will be 4.

**expunitname**
*Optional*, a character text that will be set for default use as the experimental unit label of graph methods, and also used for table methods. The default value is the empty "".

**regr**
*Optional*, specify one of the factor levels to be the “reference group”, such as a “control” group. The default value is NULL, which will just use the first level determined in the data frame.

**stamps**
*Optional*, specify a time stamp in graphs, along with cg package version identification. The default value is FALSE.

**Details**

**Input Data Frame** The input data frame dfr can be of the format "listed" or "groupcolumns".

If format="listed" for df is specified, then there must be three columns for an input data frame. The first column needs to be the experimental unit identifier, the second column needs to be the group identifier, and the third is the endpoint. The first column of the listed input data format, needs to have two sets of distinct values since it is the experimental unit identifier of response pairs. The second column of the listed input data format needs to have exactly 2 distinct values since it is the group identifier.

If format="groupcolumns" for df is specified, then there can be two columns or three columns.
two columns The column headers specify the two paired group names. Each row contains the experimental unit of paired numeric values under those two groups. In the course of creating the cgPairedDifferenceData object, another column will be binded from the left and become the first column, with the column header of expunitname is specified, and "expunit" if the default expunitname="" is specified. A sequence of integers starting with 1 up to the number of pairs/rows will be generated to uniquely identify each experimental unit pair.

three columns The first column needs to be unique experimental unit identifiers of the paired numeric values in the second and third columns. The second and third column headers will be used to identify the two paired group names. Each row's second and third column needs to contain the experimental unit of paired numeric values under those two groups. The name of the first column will be assigned to the expunitname setting if expunitname is not explicitly specified to something else instead of its default expunitname="".

As the evaluation data set is prepared for cgPairedDifferenceData object, any experimental unit pairs/rows with missing values in the endpoint are flagged. This includes a check to make sure that each experimental unit identified has a complete pair of numeric observations.

zeroscore If zeroscore="estimate" is specified, a number close to zero is derived to replace all zeroes for subsequent log-scale analyses. A spline fit (using spline and method="natural") of the log of the response vector on the original response vector is performed. The zeroscore is then derived from the log-scale value of the spline curve at the original scale value of zero. This approach comes from the concept of arithmetic-logarithmic scaling discussed in Tukey, Ciminera, and Heyse (1985).

addconstant If addconstant="simple" is specified, a number is derived and added to all response values. The approach taken is from the "white" book on S (Chambers and Hastie, 1992), page 68. The range (max - min) of the response values is multiplied by 0.0001 to derive the number to add to all the response values.

Value

A cgPairedDifferenceData object is returned, with the following slots:

dfr The original input data frame that is the specified value of the dfr argument in the function call.
dfru Processed version of the input data frame, which will be used for the various evaluation methods.
dfr.gcfmt A groupcolumns version of the input data frame with an additional column of the differences between groups, where the regfrp column of values is the subtrahend (second term) in the subtraction.
settings A list of properties associated with the data frame:

analysisname Drawn from the input argument value of analysisname.
endptname Drawn from the input argument value of endptname.
endptunits Drawn from the input argument value of endptunits.
endptscale Has the value of "log" if logscale=TRUE and "original" if logscale=FALSE.
zeroscore Has the value of NULL if the input argument was NULL. Otherwise has the derived (from zeroscore="estimate") or specified numeric value.
addconstant Has the value of NULL if the input argument was NULL. Otherwise has the specified or derived numeric value.
digits Has the value of the input argument digits or is set to the determined value of digits from the input data. Will be an integer of 0, 1, 2, 3, or 4.
grpnames Of length 2 and determined from the single factor identified of the group names. The order is determined by the first occurrence in the input data frame header in dfr and the refgrp specification.
expunitname Drawn from the input argument value of expunitname.
refgrp Drawn from the input argument of refgrp.
stamps Drawn from the input argument of stamps.

Note
Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

References

See Also
prepare

Examples
```
data(anorexiaFT)
anorexiaFT.data <- prepareCPairedDifferenceData(anorexiaFT, format="groupcolumns", analysisname="Anorexia FT", endptname="Weight", endptunits="lbs", expunitname="Patient", digits=1, logscale=TRUE)
```

```
print.cgOneFactorComparisonsTable
```

   Print One Factor Comparisons Table object with some format options

Description
Print a cgOneFactorComparisonsTable object, which contains a table of comparisons based on the cgOneFactorFit object.
Usage

```r
S4 method for signature 'cgOneFactorComparisonsTable'
print(x, digits = NULL, title = NULL, endptname = NULL, ...)
```

Arguments

- `x`: An `cgOneFactorComparisonsTable` object, typically created by `comparisonsTable.cgOneFactorFit`.
- `digits`: The number of decimal places to use in the output. If `NULL`, then the number of decimal places is taken from the `digits` value in the `settings` slot of the `cgOneFactorComparisonsTable` object.
- `title`: The title printed out with the table. If `NULL`, it is set to be "Comparisons Table of" the `analysisname` value from the `settings` slot of the `cgOneFactorComparisonsTable` object.
- `endptname`: The endpoint name, printed out with the table. If `NULL`, it is set to the `endptname` value from the `settings` slot of the `cgOneFactorComparisonsTable` object.
- `...`: Additional arguments. Only one is currently valid:
  - `model`: For `cgOneFactorComparisonsTable` objects that have tables derived from classical least squares `lm` or resistant & robust `rlm` fits, the following argument values are possible:
    - "both": Both the ordinary classical least squares and resistant robust comparisons tables are printed. This is the default when both fits are present in the `cgOneFactorComparisonsTable` object specified in the `x` argument.
    - "olsonly": Only the ordinary classical least squares group comparisons table is printed.
    - "rronly": Only the resistant & robust comparisons table is printed.

For other possible `cgOneFactorComparisonsTable` table components such as accelerated failure time or unequal variance models, the `model` argument is not relevant, and the single table will just be printed for these model types.

Details

The smallest actual p-value that will be printed is 0.001. Anything less than 0.001 will be displayed as < 0.001. If you need more digits, see the `cgOneFactorComparisonsTable` object.

The object is printed using a mix of `cat` and `print` calls. See `cgOneFactorComparisonsTable` for details of the `*.comprs` and other object slots.

Value

`print.cgOneFactorComparisonsTable` returns `invisible`. The main purpose is the side effect of printing to the current output connection, which is typically the console.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.
print.cgOneFactorDescriptiveTable

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
digits=1, logscale=TRUE, regrgp="CC")
canine.fit <- fit(canine.data)
canine.comps0 <- comparisonsTable(canine.fit)
print(canine.comps0, digits=1)
canine.comps1 <- comparisonsTable(canine.fit, mcadjust=TRUE,
type="allgroupstocontrol", regrgp="CC")
print(canine.comps1, model="olsonly")

print.cgOneFactorDescriptiveTable

Print a One Factor Descriptive Table object with some format options

Description

Print a \texttt{cgOneFactorDescriptiveTable} object, which contains a table of quantiles and other summary statistics of the data from a \texttt{cgOneFactorData} object.

Usage

\begin{verbatim}
## S4 method for signature 'cgOneFactorDescriptiveTable'
print(x, digits = NULL, title = NULL, endptname = NULL, ...)
\end{verbatim}

Arguments

\begin{itemize}
\item \textbf{x} A \texttt{cgOneFactorDescriptiveTable} object, typically created by \texttt{descriptivetable.cgOneFactorData}.
\item \textbf{digits} The number of decimal places to use in the output. If \texttt{NULL}, then the number of decimal places is taken from the \texttt{digits} value in the \texttt{settings} slot of the \texttt{cgOneFactorDescriptiveTable} object.
\item \textbf{title} The title printed out with the table. If \texttt{NULL}, it is set to be "Descriptive Table of" the \texttt{analysisname} value taken from the \texttt{settings} slot of the \texttt{cgOneFactorDescriptiveTable} object.
\end{itemize}
endptname  The endpoint name of the data summarized in the table. If NULL, it is set to the endptname value taken from the settings slot of the cgOneFactorDescriptiveTable object.

...  Additional arguments. None are currently defined for this method.

Details

The object is printed using a mix of cat and print calls. See cgOneFactorDescriptiveTable for details of the contents and other object slots.

Value

print.cgOneFactorDescriptiveTable returns invisible. The main purpose is the side effect of printing to the current output connection, which is typically the console.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgOneFactorDescriptiveTable

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")

## Next two calls are equivalent
descriptiveTable(canine.data)

print(descriptiveTable(canine.data, display="none"))

print(descriptiveTable(canine.data, display="none"),
title="Quantiles and Summary Statistics")

## Censored Data
data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
analysisname="cytokine",
endptname="GM-CSF (pg/ml)",
logscale=TRUE)
## Next two calls are equivalent

descriptiveTable(gmcsfcens.data, display="print")
print(descriptiveTable(gmcsfcens.data, display="none"))

---

**print.cgOneFactorDownweightedTable**

*Print Downweighted Observations Table object with some format options*

### Description

Print a cgOneFactorDownweightedTable object, as a table of downweighted observations in a resistant & robust fit from a cgOneFactorFit object.

### Usage

```r
S4 method for signature 'cgOneFactorDownweightedTable'
print(x, digits=NULL, title = NULL, endptname = NULL, ...)
```

### Arguments

- **x**
  - An object of class `cgOneFactorDownweightedTable`, typically created by `downweightedTable.cgOneFactorFit`.

- **digits**
  - The number of decimal places to use in the output. If NULL, then the number of decimal places is taken from the `cgOneFactorDownweightedTable` object.

- **title**
  - The title printed out with the p-value. If NULL, it is set to be "Downweighted Observations Table from Resistant & Robust Fit" of the analysisname value in the settings of the `cgOneFactorDownweightedTable` object.

- **endptname**
  - The endpoint name, printed out with the p-value. If NULL, it is set to the endptname value in the `cgOneFactorDownweightedTable` object.

- **...**
  - Additional arguments. None are currently defined for this method.

### Details

The object is printed using a mix of `cat` and `print` calls. See `cgOneFactorDownweightedTable` for details of the contents and other object slots.

### Value

`print.cgOneFactorDownweightedTable` returns `invisible`. The main purpose is the side effect of printing to the current output connection, which is typically the console. If any observations meet the cutoff criteria, a table is displayed.

If no observations meet the cutoff criteria, a text message of table emptiness is displayed instead.
Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgonefactorDownweightedTable

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
   analysisname="Canine",
   endptname="Prostate Volume",
   endptunits=expression(plain(cm)^3),
   digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
canine.dwtable <- downweightedTable(canine.fit, cutoff=0.95)
downweightedTable(canine.fit, cutoff=0.75) ## No observation
   ## downweighted at least 25%

print.cgOneFactorFit  Print One Factor Model Fit object with some format options

Description

Print a cgOneFactorFit object, which contains fitted model information.

Usage

## S4 method for signature 'cgOneFactorFit'
print(x, title = NULL, endptname = NULL, ...)

Arguments

x  An cgOneFactorFit object.
title  The title printed out with the fitted model information. If NULL, it is set to be "Fitted Models of" the analysisname value in the settings slot of the cgOneFactorFit object.
endptname  The endpoint name, printed out with the fitted model information. If NULL, it is set to the endptname value in the settings slot of the cgOneFactorFit object.
   ...
    Additional arguments. Only one is currently valid:
model. For cgOneFactorFit objects that have output derived from classical least squares `lm` or resistant & robust `rlm` fits, the following argument values are possible:

"both" Both the ordinary classical least squares and resistant & robust model fits are printed. This is the default when both fits are present in the cgOneFactorFit object specified in the `x` argument.

"olsonly" Only the ordinary classical least squares model fit is printed.

"rronly" Only the resistant & robust model fit is printed.

For other possible cgOneFactorFit components such as accelerated failure time or unequal variance model fits, the model argument is not relevant, and the single model fit will just be printed for these model types.

Details

The object is printed using a mix of `cat` and `print` calls. See `cgOneFactorFit` for details of the *fit and other object slots.

This method simply echoes print methods for individual fit classes, such as `lm` and `rlm`.

Note that `show` is an alias for `print` for this method. A `showObj.cgOneFactorFit` method is defined to display the raw form of the object.

Value

`print.cgOneFactorFit` returns `invisible`. The main purpose is the side effect of printing to the current output connection, which is typically the console.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

`cgOneFactorFit`

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
    analysisname="Canine",
    endptname="Prostate Volume",
    endptunits=expression(plain(cm)^3),
    digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
print(canine.fit)
**print.cgOneFactorGlobalTest**

*Print One Factor Global F-test object with some format options*

---

**Description**

Print a `cgOneFactorGlobalTest` object, which contains global F-test p-value information taken from a `cgOneFactorFit` object.

**Usage**

```r
S4 method for signature 'cgOneFactorGlobalTest'
print(x, title = NULL, endptname = NULL, ...)
```

**Arguments**

- `x` An `cgOneFactorGlobalTest` object, typically created by `globalTest.cgOneFactorFit`.
- `title` The title printed out with the p-value. If `NULL`, it is set to be "Group Test P-value of" the `analysisname` value in the settings slot of the `cgOneFactorGlobalTest` object.
- `endptname` The endpoint name, printed out with the p-value. If `NULL`, it is set to the `endptname` value in the settings slot of the `cgOneFactorGlobalTest` object.
- `...` Additional arguments. Only one is currently valid:
  - `model` For `cgOneFactorGlobalTest` objects that have p-values derived from classical least squares `lm` or resistant & robust `rlm` fits, the following argument values are possible:
    - "both" Both the ordinary classical least squares and resistant & robust p-values are printed. This is the default when both fits are present in the `cgOneFactorGlobalTest` object specified in the `x` argument.
    - "olsonly" Only the ordinary classical least squares p-value is printed.
    - "rronly" Only the resistant & robust approximated p-value is printed.

For other possible `cgOneFactorGlobalTest` p-value components such as accelerated failure time or unequal variance models, the `model` argument is not relevant, and the single p-value will just be printed for these model types.

**Details**

The smallest actual p-value that will be printed is 0.001. Anything less than 0.001 will be displayed as < 0.001. If you need more digits, see the `cgOneFactorGlobalTest` object.

The notion of a global F test, or equivalently, of $R^2$, for resistant & robust linear models is murky, as no clear theoretical analogue to the ordinary classical least squares approach exists. See `cgOneFactorGlobalTest` for details, and regard the output p-value here as ad-hoc.

The object is printed using a mix of `cat` and `print` calls. See `cgOneFactorGlobalTest` for details of the `*.gpval` and other object slots.
print.cgOneFactorGrpSummaryTable

Value

print.cgOneFactorGlobalTest returns **invisible**. The main purpose is the side effect of printing to the current output connection, which is typically the console.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgOneFactorGlobalTest

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns", analysisname="Canine", endptname="Prostate Volume", endptunits=expression(plain(cm)^3), digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
canine.global <- globalTest(canine.fit)
print(canine.global)

---

print.cgOneFactorGrpSummaryTable

*Print One Factor Group Summary Table object with some format options*

Description

Print a cgOneFactorGrpSummaryTable object, which contains a table of group means and variability based on the cgOneFactorFit object.

Usage

```r
S4 method for signature 'cgOneFactorGrpSummaryTable'
print(x, digits = NULL, title = NULL, endptname = NULL, ...)```
Arguments

\(x \)
An \texttt{cgOneFactorGrpSummaryTable} object, typically created by \texttt{grpSummaryTable.cgOneFactorFit}.

\(\text{digits} \)
The number of decimal places to use in the output. If \texttt{NULL}, then the number of decimal places is taken from the \texttt{digits} value in the \texttt{settings} slot of the \texttt{cgOneFactorGrpSummaryTable} object.

\(\text{title} \)
The title printed out with the table. If \texttt{NULL}, it is set to be “Group Summary Table of” the \texttt{analysisname} value from the \texttt{settings} slot of the \texttt{cgOneFactorGrpSummaryTable} object.

\(\text{endptname} \)
The endpoint name, printed out with the table. If \texttt{NULL}, it is set to the \texttt{endptname} value from the \texttt{settings} slot of the \texttt{cgOneFactorGrpSummaryTable} object.

\(\ldots \)
Additional arguments. Only one is currently valid:

\(\text{model} \)
For \texttt{cgOneFactorGrpSummaryTable} objects that have tables derived from classical least squares \texttt{lm} or resistant & robust \texttt{rlm} fits, the following argument values are possible:

- “both” Both the ordinary classical least squares and resistant robust comparisons tables are printed. This is the default when both fits are present in the \texttt{cgOneFactorGrpSummaryTable} object specified in the \(x \) argument.
- “olsonly” Only the ordinary classical least squares comparisons table is printed.
- “rronly” Only the resistant and robust comparisons table is printed.

For other possible \texttt{cgOneFactorGrpSummaryTable} table components such as accelerated failure time or unequal variance models, the \texttt{model} argument is not relevant, and the single table will just be printed for these model types.

Details

The object is printed using a mix of \texttt{cat} and \texttt{print} calls. See \texttt{cgOneFactorGrpSummaryTable} for details of the \(\ast \).grps and other object slots.

Value

\texttt{print.cgOneFactorGrpSummaryTable} returns \texttt{invisible}. The main purpose is the side effect of printing to the current output connection, which is typically the console.

Note

Contact \texttt{<cg@billpikounis.net>} for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

\texttt{cgOneFactorGrpSummaryTable}
Examples

```r
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
                                        analysisname="Canine",
                                        endptname="Prostate Volume",
                                        endptunits=expression(plain(cm)^3),
                                        digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
canine.grpsumm <- grpSummaryTable(canine.fit)
print(canine.grpsumm, digits=2)
```

Description

Print a `cgOneFactorSampleSizeTable` object, which contains a table of sample size estimates based on a `cgOneFactorFit` object.

Usage

```r
## S4 method for signature 'cgOneFactorSampleSizeTable'
print(x, title=NULL, endptname=NULL, ...)
```

Arguments

- **x**: A `cgOneFactorSampleSizeTable` object, typically created by `samplesizeTable.cgOneFactorFit`.
- **title**: The title for the table. If NULL, it is set to be "Sample Size Table from" concatenated to `planningname` value in the settings slot of the `cgOneFactorSampleSizeTable` object.
- **endptname**: The endpoint name, printed out with the table. If NULL, it is set to the `endptname` value from the settings slot of the `cgOneFactorSampleSizeTable` object.
- **...**: Additional arguments. Currently one is valid:
 - **model**: For `cgOneFactorComparisonsTable` objects that have tables derived from classical least squares `lm` or resistant & robust `rlm` fits, the following argument values are possible:
 - "both" Both the ordinary classical least squares and resistant robust sample size tables are printed. This is the default when both fits are present in the `cgOneFactorSampleSizeTable` object specified in the x argument. If only one of the two tables were computed, then only that single table is printed.
 - "olsonly" Only the ordinary classical least squares group summary table is printed.
 - "rronly" Only the resistant & robust group summary table is printed.
print.cgPairedDifferenceComparisonsTable

Details

The object is printed using a mix of `cat` and `print` calls. See `cgOneFactorSampleSizeTable` for details of the *.sstable and other object slots.

Value

`print.cgOneFactorSampleSizeTable` returns *invisible*. The main purpose is the side effect of printing to the current output connection, which is typically the console.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

`cgOneFactorSampleSizeTable`

Examples

```r
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
  analysisname="Canine",
  endptname="Prostate Volume",
  endptunits=expression(plain(cm)^3),
  digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
canine.samplesize <- samplesizeTable(canine.fit, direction="increasing",
  model="olsonly",
  mmdvec=c(10, 25, 50, 75, 100), display="none")
print(canine.samplesize)
```

print.cgPairedDifferenceComparisonsTable

Print Paired Difference Comparisons Table object with some format options

Description

Print a `cgPairedDifferenceComparisonsTable` object, which contains a table of comparisons based on the `cgPairedDifferenceFit` object.
Usage

```r
## S4 method for signature 'cgPairedDifferenceComparisonsTable'
print(x, digits = NULL, title = NULL, endptname = NULL, ...)
```

Arguments

- **x**
 - An `cgPairedDifferenceComparisonsTable` object, typically created by `comparisonsTable.cgPairedDifferenceFit`.

- **digits**
 - The number of decimal places to use in the output. If `NULL`, then the number of decimal places is taken from the `digits` value in the settings slot of the `cgPairedDifferenceComparisonsTable` object.

- **title**
 - The title printed out with the table. If `NULL`, it is set to be "Comparisons Table of" the `analysisname` value taken from the settings slot of the `cgPairedDifferenceComparisonsTable` object.

- **endptname**
 - The endpoint name, printed out with the table. If `NULL`, it is set to the `endptname` value from the settings slot of the `cgPairedDifferenceComparisonsTable` object.

- **...**
 - Additional arguments. Only one is currently valid:
 - **model**
 - For `cgPairedDifferenceComparisonsTable` objects that have tables derived from classical least squares `lm` or resistant & robust `rlm` fits, the following argument values are possible:
 - "both" Both the ordinary classical least squares and resistant & robust comparisons tables are printed. This is the default when both fits are present in the `cgPairedDifferenceComparisonsTable` object specified in the `x` argument.
 - "olsonly" Only the ordinary classical least squares group comparisons table is printed.
 - "rronly" Only the resistant & robust comparisons table is printed.

Details

The smallest actual p-value that will be printed is \(0.001\). Anything less than \(0.001\) will be displayed as \(<0.001\). If you need more digits, see the `cgPairedDifferenceComparisonsTable` object.

The object is printed using a mix of `cat` and `print` calls. See `cgPairedDifferenceComparisonsTable` for details of the `*.comprs` and other object slots.

Value

`print.cgPairedDifferenceComparisonsTable` returns `invisible`. The main purpose is the side effect of printing to the current output connection, which is typically the console.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.
Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

Examples

data(anorexiaFT)

anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1,
logscale=TRUE)

anorexiaFT.fit <- fit(anorexiaFT.data)
anorexiaFT.comps <- comparisonsTable(anorexiaFT.fit)
print(anorexiaFT.comps, digits=2)
print(anorexiaFT.comps, model="olsonly")

print.cgPairedDifferenceCorrelationTable

Print a Paired Difference Correlation Table object with some format options

Description
Print a cgPairedDifferenceCorrelationTable object, which contains a table of correlations of
the data from a cgPairedDifferenceData object.

Usage

S4 method for signature 'cgPairedDifferenceCorrelationTable'
print(x, title = NULL, endptname = NULL, ...)

Arguments

x A cgPairedDifferenceCorrelationTable object, typically created by
correlationTable.cgPairedDifferenceData.
title The title printed out with the table. If NULL, it is set to be "Correlation Table of"
the analysisname value taken from the settings slot of the
cgPairedDifferenceCorrelationTable object.
endptname The endpoint name of the data summarized in the table. If NULL, it is set to the endptname value taken from the settings slot of the cgPairedDifferenceCorrelationTable object.

... Additional arguments. None are currently defined for this method.

Details

The object is printed using a mix of cat and print calls. See cgPairedDifferenceCorrelationTable for details of the contents and other object slots.

Two decimal places are used in the display of the correlations.

Value

print.cgPairedDifferenceCorrelationTable returns invisible. The main purpose is the side effect of printing to the current output connection, which is typically the console.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgPairedDifferenceCorrelationTable

Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1,
logscale=TRUE)

Next two calls are equivalent
correlationTable(anorexiaFT.data)

print(correlationTable(anorexiaFT.data, display="none"))

A change in title
print(correlationTable(anorexiaFT.data, display="none",
title="Correlations"))
print.cgPairedDifferenceDescriptiveTable

Print a Paired Difference Descriptive Table object with some format options

Description

Print a cgPairedDifferenceDescriptiveTable object, which contains a table of quantiles and other summary statistics of the data from a cgPairedDifferenceData object.

Usage

```r
## S4 method for signature 'cgPairedDifferenceDescriptiveTable'
print(x, digits = NULL, title = NULL, endptname = NULL, ...)
```

Arguments

- `x` A cgPairedDifferenceDescriptiveTable object, typically created by `descriptiveTable.cgPairedDifferenceData`.
- `digits` The number of decimal places to use in the output. If NULL, then the number of decimal places is taken from the digits value in the settings slot of the cgPairedDifferenceDescriptiveTable object.
- `title` The title printed out with the table. If NULL, it is set to be "Descriptive Table of" the analysisname value taken from the settings slot of the cgPairedDifferenceDescriptiveTable object.
- `endptname` The endpoint name of the data summarized in the table. If NULL, it is set to the endptname value taken from the settings slot of the cgPairedDifferenceDescriptiveTable object.
- `...` Additional arguments. None are currently defined for this method.

Details

The object is printed using a mix of cat and print calls. See `cgPairedDifferenceDescriptiveTable` for details of the contents and other object slots.

Value

`print.cgPairedDifferenceDescriptiveTable` returns `invisible`. The main purpose is the side effect of printing to the current output connection, which is typically the console.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]
See Also

cgPairedDifferenceDescriptiveTable

Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="1bs",
expunitname="Patient",
digits=1,
logscale=TRUE)

Next two calls are equivalent
descriptiveTable(anorexiaFT.data)

print(descriptiveTable(anorexiaFT.data, display="none"))

A change in title
print(descriptiveTable(anorexiaFT.data, display="none"),
 title="Quantiles and Summary Statistics")

print.cgPairedDifferenceDownweightedTable

Print Downweighted Observations Table object with some format options

Description

Print a cgPairedDifferenceDownweightedTable object, as a table of downweighted observations in a resistant & robust fit from a cgPairedDifferenceFit object.

Usage

S4 method for signature 'cgPairedDifferenceDownweightedTable'
print(x, digits=NULL, title = NULL, endptname = NULL, ...)

Arguments

x An object of class cgPairedDifferenceDownweightedTable, typically created by
 downweightedTable.cgPairedDifferenceFit.

digits The number of decimal places to use in the output. If NULL, then the number of
decimal places is taken from the cgPairedDifferenceDownweightedTable
object.

title The title printed out with the p-value. If NULL, it is set to be "Downweighted
Observations Table from Resistant & Robust Fit" of the analysisname value in
the settings of the cgPairedDifferenceDownweightedTable object.
endptname

The endpoint name, printed out with the p-value. If NULL, it is set to the endptname value in the `cgPairedDifferenceDownweightedTable` object.

... Additional arguments. None are currently defined for this method.

Details

The object is printed using a mix of `cat` and `print` calls. See `cgPairedDifferenceDownweightedTable` for details of the contents and other object slots.

Value

`print.cgPairedDifferenceDownweightedTable` returns `invisible`. The main purpose is the side effect of printing to the current output connection, which is typically the console. If any observations meet the cutoff criteria, a table is displayed.

If no observations meet the cutoff criteria, a text message of table emptiness is displayed instead.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

`cgPairedDifferenceDownweightedTable`

Examples

data(anorexiaFT)

anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1,
logscale=TRUE)

anorexiaFT.fit <- fit(anorexiaFT.data)

anorexiaFT.dw <- downweightedTable(anorexiaFT.fit, cutoffwt=0.25, display='none')

print(anorexiaFT.dw) ## No observation
print.cgPairedDifferenceFit

Print One Factor Model Fit object with some format options

Description

Print a cgPairedDifferenceFit object, which contains fitted model information.

Usage

```r
## S4 method for signature 'cgPairedDifferenceFit'
print(x, title = NULL, endptname = NULL, ...)
```

Arguments

- `x`: An cgPairedDifferenceFit object.
- `title`: The title printed out with the fitted model information. If NULL, it is set to be "Fitted Models of" the analysisname value in the settings slot of the cgPairedDifferenceFit object.
- `endptname`: The endpoint name, printed out with the fitted model information. If NULL, it is set to the endpointname value in the settings slot of the cgPairedDifferenceFit object.
- `...`: Additional arguments. Only one is currently valid:
 - `model`: For cgPairedDifferenceFit objects that have output derived from classical least squares `lm` or resistant & robust `rlm` fits, the following argument values are possible:
 - "both": Both the ordinary classical least squares and resistant & robust model fits are printed. This is the default when both fits are present in the cgPairedDifferenceFit object specified in the x argument.
 - "olsonly": Only the ordinary classical least squares model fit is printed.
 - "rronly": Only the resistant & robust model fit is printed.

Details

The object is printed using a mix of `cat` and `print` calls. See cgPairedDifferenceFit for details of the *fit and other object slots.

This method simply echoes print methods for individual fit classes, such as `lm` and `rlm`.

Note that `show` is an alias for `print` for this method. A `showObj.cgPairedDifferenceFit` method is defined to display the raw form of the object.

Value

`print.cgPairedDifferenceFit` returns `invisible`. The main purpose is the side effect of printing to the current output connection, which is typically the console.
Note
Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also
cgOneFactorFit, cgPairedDifferenceFit

Examples
data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1, logscale=TRUE)
anorexiaFT.fit <- fit(data=anorexiaFT.data, type="rr")

print(anorexiaFT.fit)

print.cgPairedDifferenceSampleSizeTable
Print a Paired Difference Sample Size Table object with some format options

Description
Print a cgPairedDifferenceSampleSizeTable object, which contains a table of sample size estimates based on a cgPairedDifferenceFit object.

Usage
S4 method for signature 'cgPairedDifferenceSampleSizeTable'
print(x, title=NULL, endptname=NULL, ...)

Arguments
x A cgPairedDifferenceSampleSizeTable object, typically created by
samplesizeTable.cgPairedDifferenceFit.
title The title for the table. If NULL, it is set to be "Sample Size Table from" concatenated to planningname value in the settings slot of the cgPairedDifferenceSampleSizeTable object.
endptname The endpoint name, printed out with the table. If NULL, it is set to the endptname value from the settings slot of the cgPairedDifferenceSampleSizeTable object.

... Additional arguments. None are currently defined.

Details

The object is printed using a mix of cat and print calls. See cgPairedDifferenceSampleSizeTable for details of the *.sstable and other object slots.

Value

print.cgPairedDifferenceSampleSizeTable returns invisible. The main purpose is the side effect of printing to the current output connection, which is typically the console.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgPairedDifferenceSampleSizeTable

Examples

data(anorexiaFT)

anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
 analysisname="Anorexia FT",
 endptname="Weight",
 endptunits="lbs",
 expunitname="Patient",
 digits=1,
 logscale=TRUE)

anorexiaFT.fit <- fit(anorexiaFT.data)

The interest is in increased weight for the anorexia FT
(Family treatment) group of patients

anorexiaFT.samplesize <- samplesizeTable(anorexiaFT.fit, direction="increasing",
 mmdvec=c(5, 10, 15, 20), display="none")

print(anorexiaFT.samplesize)

The above two calls produce the same screen output as
samplesizeTable(anorexiaFT.fit, direction="increasing",
print.cgPairedDifferenceVarianceTable

print.cgPairedDifferenceVarianceTable

Description

Print a cgPairedDifferenceVarianceTable object, which contains a table of variances from a
cgPairedDifferenceFit object.

Usage

S4 method for signature 'cgPairedDifferenceVarianceTable'
print(x, digits = NULL, title = NULL, endptname = NULL, ...)

Arguments

x A cgPairedDifferenceVarianceTable object, created by
varianceTable.cgPairedDifferenceFit.
digits The number of decimal places to use in the output, after any leading zeroes right
of the decimal point. If NULL, then the number of decimal places is taken from
the digits value in the settings slot of the
cgPairedDifferenceComparisonsTable object.
title The title printed out with the table. If NULL, it is set to be "Variance Components
Table of" the analysisName value taken from the settings slot of the
cgPairedDifferenceVarianceTable object.
endptname The endpoint name of the data summarized in the table. If NULL, it is set to the
endptname value taken from the settings slot of the
cgPairedDifferenceVarianceTable object.
... Additional arguments. None are currently defined for this method.

Details

The object is printed using a mix of cat and print calls. See cgPairedDifferenceVarianceTable
for details of the contents and other object slots.

Two decimal places (after any leading zeroes) are used by default in the display of the variances.
As described in cgPairedDifferenceVarianceTable, the table displays a decomposition of the
total variance into its within-experimental unit and between-experimental unit variance compo-
nents. The variance estimates are provided in the first column, and the relative percents of these
two components are in the second column. The third column is the square root of the first column
of variances, to provide Spread/StdDev values in the units of the endpoint.
Below the printed table is a series of Notes. The first note narrates the estimated gain in sensitivity from using a paired groups design instead of an unpaired groups design. The gains are expressed in terms of reduced experimental unit sample size.

The label portion "experimental unit" in the printed output is replaced by the `expunitname` component of the settings slot of the `cgPairedDifferenceVarianceTable` object.

Value

`print.cgPairedDifferenceVarianceTable` returns `invisible`. The main purpose is the side effect of printing to the current output connection, which is typically the console.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgPairedDifferenceVarianceTable

Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="grouppositions", analysisname="Anorexia FT", endptname="Weight", endptunits="lbs", expunitname="Patient", digits=1, logscale=TRUE)

anorexiaFT.fit <- fit(anorexiaFT.data)

Next two calls are equivalent
varianceTable(anorexiaFT.fit)

print(varianceTable(anorexiaFT.fit, display="none"))

A change in title
print(varianceTable(anorexiaFT.fit, display="none"),
 title="Estimated Variances")

Show three digits in display
print(varianceTable(anorexiaFT.fit), digits=3)
Description

Generic function to create a graph of experimental unit profiles of a data object created by the cg package.

Usage

```r
profileGraph(data, ...) 
```

Arguments

- `data` A data object created with a `prepare` function or method from the cg package. The only class of object currently valid is `cgPairedDifferenceData`, which is created by the `prepareCGPairedDifferenceData` function.

- `...` Additional arguments, depending on the specific method written for the object. Currently, there is only one such specific method; see `profileGraph.cgPairedDifferenceData` for any additional arguments that can be specified.

Details

Individual points are jittered, and open circles are used to alleviate potential overlap and the danger of representing multiple points as a single point.

The profile graph for paired difference data is the simplest of profiles as each experimental unit has exactly two points connected by a straight line. Labels for the experimental units are added for identification.

Minimum and maximum values from ranges of data are respectively labeled in the bottom and top left corners of the graph regions.

Tick marks are attempted to be chosen wisely. For log-scaled axes in particular, leading digits of 2, 5, and 10 for values are included if possible. Since the algorithm is empirical, the `ticklabels` argument is available for further refinement or complete replacement of tickmarks.

Value

The main purpose is the side effect of graphing to the current device. See the specific methods for discussion of any return values.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]
profileGraph.cgPairedDifferenceData

See Also

profileGraph.cgPairedDifferenceData

Examples

data(anorexia.FT)
anorexiaFT.data <- prepareCPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1, logscale=TRUE)

profileGraph(anorexiaFT.data)

Graph the data on the original scale instead of the log scale.
profileGraph(anorexiaFT.data, logscale=FALSE)

profileGraph.cgPairedDifferenceData

Graph Profiles of Experimental Unit Pairs in a cgPairedDifferenceData object

Description

Create a profile graph of the data in a cgPairedDifferenceData object.

Usage

S4 method for signature 'cgPairedDifferenceData'
profileGraph(data, ...)

Arguments

data A cgPairedDifferenceData object.
... Additional arguments, both optional. Two are currently valid:
logscale A logical value, indicating whether or not the point graph should be plotted on the logarithmic scale. If logscale is not specified, its value is taken from the cgPairedDifferenceData object, which prepareCPairedDifferenceData sets from its logscale argument.
ticklabels A list of two components:
mod Can be either of these two values,
"replace" Before graphing the data, remove any automatically generated tickmarks for the y-axis, and create the tickmarks specified in the marks component below.
"add" Before graphing the data, add tickmarks specified in the marks component below, to the automatically generated ones.
marks A vector of tickmarks to be placed on the y-axis. Any numeric representations will be coerced to character.
Details

The profile graph for paired difference data is the simplest of profiles as each experimental unit has exactly two points connected by a straight line. Labels for the experimental units are added for identification.

Individual points are jittered, and open circles are used to alleviate potential overlap and the danger of representing multiple points as a single point.

Tick marks are attempted to be chosen wisely. For log-scaled axes in particular, leading digits of 2, 5, and 10 for values are included if possible. Since the algorithm is empirical, the \texttt{ticklabels} argument is available for further refinement or complete replacement of tickmarks.

The heading for the graph is taken from the \texttt{cgPairedDifferenceData} object, which \texttt{prepareCGPairedDifferenceData} sets from its \texttt{analysisname} argument.

The label for the y-axis is taken from the \texttt{cgPairedDifferenceData} object, which \texttt{prepareCGPairedDifferenceData} sets from its \texttt{endptname} and \texttt{endptunits} arguments.

The number of decimal places printed in the ticks on the y-axis is taken from the \texttt{cgPairedDifferenceData} object, which \texttt{prepareCGPairedDifferenceData} sets from its \texttt{digits} argument.

Minimum and maximum values from ranges of data are respectively labeled in the bottom and top left corners of graph regions.

Value

\texttt{profileGraph.cgPairedDifferenceData} returns an invisible NULL. The main purpose is the side effect of graphing to the current device.

Note

Contact \texttt{<cg@billpikounis.net>} for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

Examples

data(anorexia.FT)
anorexiaFT.data <- \texttt{prepareCGPairedDifferenceData(anorexiaFT, format=\texttt\"groupcolumns\"), analysisname=\texttt\"Anorexia FT\", endptname=\texttt\"Weight\", endptunits=\texttt\"lbs\", expunitname=\texttt\"Patient\", digits=1, logscale=TRUE)}

\texttt{profileGraph(anorexiaFT.data)}

Graph the data on the original scale instead of the log scale.
\texttt{profileGraph(anorexiaFT.data, logscale=FALSE)}
Description

Create a Quantile-Quantile (Q-Q) Gaussian graph of the residuals of a fitted object from the \texttt{cg} package.

Usage

\texttt{qqGraph(fit, line = TRUE, cgtheme = TRUE, device = "single", ...)}

Arguments

- \texttt{fit}: A fit object, typically created by the \texttt{fit} generic function.
- \texttt{line}: Add a line to help assess the distribution of the residuals. See specific method written for the \texttt{fit} argument.
- \texttt{cgtheme}: When set to the default \texttt{TRUE}, ensures a trellis device is active with limited color scheme. Namely \texttt{background}, \texttt{strip.shingle}, and \texttt{strip.background} are each set to "white".
- \texttt{device}: Can be one of three values:
 - "single": The default, which will put all graphs on the same device page.
 - "multiple": Relevant only when multiple fitted models are present in the \texttt{fit} object and requested to be plotted. In those cases, a new graphics device is generated to hold each additional plot beyond the first.
 - "ask": Relevant only when multiple fitted models are present in the \texttt{fit} object and requested to be plotted. In these cases, each plot is portrayed as a single-paneled graph, with the \texttt{ask=TRUE} argument specified in \texttt{par} so that the user input confirmation is needed before the graphs are drawn.
- \texttt{...}: Additional arguments, depending on the specific method written for the object. See the method-specific documentation for additional details.

Value

\texttt{qqGraph} returns an invisible \texttt{NULL}. The main purpose is the side effect of graphing to the current device.

Note

Contact \texttt{<cg@billpikounis.net>} for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]
See Also

 qqGraph.cgOneFactorFit

Examples

data(canine)
canine.data <-- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")
canine.fit <-- fit(canine.data)
qqGraph(canine.fit)

qqGraph.cgOneFactorFit

Quantile-Quantile (QQ) Graphs of a cgOneFactorFit object

Description

Create a Q-Q Gaussian graph of the residuals of a cgOneFactorFit object

Usage

 ## S4 method for signature 'cgOneFactorFit'
 qqGraph(fit, line=NULL, cgtheme = TRUE, device = "single", ...)

Arguments

 fit A fit object of class cgOneFactorFit.
 line Add a line through the estimated 25th and 75th percentiles. When set to
 the default NULL, the addition of a line depends on the following: When there is no
 censored data, the line will be added with the qqline algorithm. If any censored
 data residuals are present, no line is added unless line=TRUE is explicitly
 specified below.
 cgtheme When set to the default TRUE, ensures a trellis device is active with limited color
 scheme. Namely, background, strip.shingle, and strip.background are
 each set to "white".
 device Can be one of three values:

"single" The default, which will put all graphs on the same device page. For
example, when resistant & robust and classical least squares are present and
model="both" (the default), a 2 x 1 paneled graph will be created.
"multiple" Relevant only when resistant & robust and classical least squares are present and model="both" (the default) or model="extended". In those cases, a new graphics device is generated to hold the resistant & robust version, as a single-paneled graph, and the classical least squares version is on the previous device. If model="extended", then a second new graphics device is generated to hold the unweighted resistant & robust residuals, as another single-paneled graph.

"ask" Relevant only when resistant & robust and classical least squares are present and model="both" (the default) or model="extended". In that case, each are portrayed as a single-paneled graph, with the ask=TRUE argument specified in par so that the user input confirmation is needed before the graphs are drawn.

... Additional arguments. One is currently valid:

model For cgOneFactorFit fit objects that have classical least squares lm() or resistant & robust rlm() fits, the following argument values are possible:

"both" Q-Q graphs of the residuals from both the ordinary classical least squares and resistant & robust fits are plotted. This is the default when both fits are present in the cgOneFactorFit object specified in the fit argument. If the resistant & robust fit is not available, this value is not relevant.

"olsonly" Only a Q-Q graph of the residuals from the ordinary classical least squares olsfit fit is performed.

"rronly" or "rrwtdonly" Only a Q-Q graph of the weighted residuals from the resistant and robust rrfit fit is plotted.

"rrrunwtdonly" Only a Q-Q graph of the unweighted residuals from the resistant and robust rrfit fit is plotted.

For other possible cgOneFactorFit fit slots such as accelerated failure time or unequal variance models, the model argument is not relevant, and the appropriate Q-Q graph will be plotted for these model types.

Details

For censored data residuals, left-censored values are shown as a shallow "V", which is actually just a rotated downward "<" sign. Similarly, right-censored values are shown as a deeper "^", which is a rotated upwared ">" sign.

For the line argument, an added line when censored data residuals are present needs to be interpreted very cautiously. If "too many" censored data values are present, the line will appear nonsensical if indeed it can even be estimated with 25th and 75th percentiles in the presence of the the censored data residuals. These percentiles are estimated via the Kaplan-Meier method as proposed by Gentleman and Crowley (1991), with the survival::survfit function.

The heading for the graph is taken from the cgOneFactorData object, which prepareCGOneFactorData sets from its analysisname argument.

The label for the Y-axis of residuals is derived from the cgOneFactorData object, which prepareCGOneFactorData sets from its endptname argument.

The number of decimal places printed in the ticks on the Y-axis is taken from the cgOneFactorData object, which prepareCGOneFactorData sets from its digits argument.
The minimum and maximum values from the range of the residuals are respectively labeled in the bottom and top left corners of the graph region.

Value

`qqGraph.cgOneFactorFit` returns an invisible NULL. The main purpose is the side effect of graphing to the current device.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

References

See Also

`qqline`

Examples

```r
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
qqGraph(canine.fit)
qqGraph(canine.fit, model="olsonly")
```
Usage

```r
### S4 method for signature 'cgPairedDifferenceFit'
qqGraph(fit, line=TRUE, cgtheme = TRUE, device = "single", ...)
```

Arguments

- `fit`
 A fit object of class `cgPairedDifferenceFit`.
- `line`
 Add a line through the estimated 25th and 75th percentiles, when set to the default TRUE.
- `cgtheme`
 When set to the default TRUE, ensures a trellis device is active with limited color scheme. Namely, background, strip.shingle, and strip.background are each set to "white".
- `device`
 Can be one of three values:
 - "single" The default, which will put all graphs on the same device page. For example, when resistant & robust and classical least squares are present and model="both" (the default), a 2 x 1 paneled graph will be created.
 - "multiple" Relevant only when resistant & robust and classical least squares are present and model="both" (the default) or model="extended". In those cases, a new graphics device is generated to hold the resistant & robust version, as a single-paneled graph, and the classical least squares version is on the previous device. If model="extended", then a second new graphics device is generated to hold the unweighted resistant & robust residuals, as another single-paneled graph.
 - "ask" Relevant only when resistant & robust and classical least squares are present and model="both" (the default) or model="extended". In that case, each are portrayed as a single-paneled graph, with the ask=TRUE argument specified in par so that the user input confirmation is needed before the graphs are drawn.

...

Additional arguments. One is currently valid:

- `model`
 For `cgPairedDifferenceFit` fit objects that have classical least squares `lm()` or resistant & robust `rlm()` fits, the following argument values are possible:
 - "both" Q-Q graphs of the residuals from both the ordinary classical least squares and resistant & robust fits are plotted. This is the default when both fits are present in the `cgPairedDifferenceFit` object specified in the `fit` argument. If the resistant & robust fit is not available, this value is not relevant.
 - "olsonly" Only a Q-Q graph of the residuals from the ordinary classical least squares `olsfit` fit is performed.
 - "rronly" or "rrwtdonly" Only a Q-Q graph of the weighted residuals from the resistant and robust `rrfit` fit is plotted.
 - "rrrunwtdonly" Only a Q-Q graph of the unweighted residuals from the resistant and robust `rrfit` fit is plotted.
Details

The heading for the graph is taken from the cgPairedDifferenceData object, which `prepareCGPairedDifferenceData` sets from its analysisname argument.

The label for the Y-axis is taken from the cgPairedDifferenceData object, which `prepareCGPairedDifferenceData` sets from its endptname argument.

The number of decimal places printed in the ticks on the Y-axis is taken from the cgPairedDifferenceData object, which `prepareCGPairedDifferenceData` sets from its digits argument.

The minimum and maximum values from the range of the residuals are respectively labeled in the bottom and top left corners of the graph region.

Value

`qqGraph.cgPairedDifferenceFit` returns an invisible NULL. The main purpose is the side effect of graphing to the current device.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

`qqline`

Examples

```r
data(anorexiaFT)

anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns", analysisname="Anorexia FT", endptname="Weight", endptunits="lbs", expunitname="Patient", digits=1, logscale=TRUE)

anorexiaFT.fit <- fit(anorexiaFT.data)

qqGraph(anorexiaFT.fit)

qqGraph(anorexiaFT.fit, model="olsonly")
```
samplesizeGraph

Graph Estimated Sample Sizes

Description

Generic function to graph a table of estimated sample sizes, using a Sample Size table created by the cg package.

Usage

samplesizeGraph(sstable, Nscale = "log", mmdscale = "log", ...)

Arguments

sstable A samplesizetable created by a samplesizetable method from the cg package.

Nscale A character indicating whether the y-axis, which shows the estimated sample sizes, should be drawn on the log scale ("log") or the original scale ("original").

mmdscale A character indicating whether the x-axis, which shows the minimum meaningful differences to be detected, should be drawn on the log scale ("log") or the original scale ("original").

... Additional arguments, depending on the specific method written for the object. See the specific methods for additional details.

Value

The main purpose is the side effect of graphing to the current device. See the specific methods for discussion of any return values.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

samplesizeGraph.cgOneFactorSampleSizeTable
Examples

One Factor data

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
canine.samplesize <- samplesizeTable(canine.fit, direction="increasing",
 mmdvec=c(10, 25, 50, 75, 100))
samplesizeGraph(canine.samplesize)

Paired Difference data
data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
 analysisname="Anorexia FT",
 endptname="Weight",
 endptunits="lbs",
 expunitname="Patient",
 digits=1, logscale=TRUE)
anorexiaFT.fit <- fit(anorexiaFT.data)

The interest is in increased weight for the anorexia FT
(family treatment) group of patients
anorexiaFT.samplesize <- samplesizeTable(anorexiaFT.fit, direction="increasing",
 mmdvec=c(5, 10, 15, 20)) ## print method shows table
samplesizeGraph(anorexiaFT.samplesize)

samplesizeGraph.cgOneFactorSampleSizeTable

Graph estimated sample sizes from a cgOneFactorSampleSizeTable object

Description

Creates a graph to see estimated sample sizes in a cgOneFactorSampleSizeTable object.

Usage

S4 method for signature 'cgOneFactorSampleSizeTable'
samplesizeGraph(sstable, Nscale="log", mmdscale = "log", ...)

Arguments

sstable A sample size object of class `cgOneFactorSampleSizeTable`.

Nscale A character indicating whether the Y-axis, which shows the estimated samples sizes, should be drawn on the log scale ("log") or the original scale ("original").

mmdscale A character indicating whether the X-axis, which shows the minimum meaningful differences to be detected, should be drawn on the log scale ("log") or the original scale ("original").

... Additional arguments:

cgtheme When set to the default TRUE, ensures a trellis device is active with limited color scheme. Namely background, strip.shingle, and strip.background are each set to "white".

device Can be one of three values:

"single" The default, which will put all graphs on the same device page. For example, when resistant & robust and classical least squares sample size estimates are present and model="both" (the default), a 2 x 1 paneled graph will be created.

"multiple" Relevant only when resistant & robust and classical least squares sample size estimates are present and model="both". In those cases, a new graphics device is generated to hold the resistant & robust version, as a single-paneled graph, and the classical least squares version is on the previous device.

"ask" Relevant only when resistant & robust and classical least squares samples size estimates are present and model="both" (the default). In that case, each are portrayed as a single-paneled graph, with the ask=TRUE argument specified in par so that the user input confirmation is needed before the graphs are drawn.

model For `cgOneFactorOneSampleSizeTable` objects that have classical least squares `lm()` filled or resistant & robust `rlm()` filled slots, the following argument values are possible:

"both" Sample Size graphs based on both the ordinary classical least squares and resistant & robust slots are populated. This is the default when both slots are present in the `cgOneFactorSampleSizeTable` object specified in the sstable argument. If the resistant & robust fit is not available, this value is not relevant.

"olsonly" Only an Sample Size Table Graph based on the ordinary classical least squares table slot is created.

"rronly" Only a Sample Size Table Graph based on the resistant and robust table slot is created.

mmdticklabels A list of two components:

mod Can be either of these two values,

"replace" Before graphing the data, remove any automatically generated tickmarks for the y-axis, and create the tickmarks specified in the marks component below.

"add" Before graphing the data, add tickmarks specified in the marks component below, to the automatically generated ones.
marks A vector of tickmarks to be placed on the x-axis. Any numeric representations will be coerced to character.

nticklabels A list of two components:

mod Can be either of these two values,
"replace" Before graphing the data, remove any automatically generated tickmarks for the x-axis, and create the tickmarks specified in the marks component below.
"add" Before graphing the data, add tickmarks specified in the marks component below, to the automatically generated ones.

marks A numeric vector of tickmarks to be placed on the y-axis. Any numeric representations will be coerced to character.

Details

The minimum and maximum sample size values are added inside the plot region in blue, flush against the y-axis in the top and bottom left corners.

Tick marks are attempted to be chosen wisely. For log-scaled axes in particular, leading digits of 2, 5, and 10 for values are included if possible. Since the algorithm is empirical, the ticklabels argument is available for further refinement or complete replacement of tickmarks.

The method essentially portrays in a graph the same information shown by the print method of the cgOneFactorSampleSizeTable object.

Value

samplesizeGraph.cgOneFactorSampleSizeTable returns an invisible NULL. The main purpose is the side effect of graphing to the current device.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgOneFactorSampleSizeTable

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
samplesizeGraph.cgPairedDifferenceSampleSizeTable

Graph estimated sample sizes from a cgPairedDifferenceSampleSizeTable object

Description

Creates a graph to see estimated sample sizes in a cgPairedDifferenceSampleSizeTable object.

Usage

S4 method for signature 'cgPairedDifferenceSampleSizeTable'
samplesizeGraph(sstable, Nscale, mmdscale, ...)

Arguments

- **sstable**
 A sample size object of class `cgPairedDifferenceSampleSizeTable`.

- **Nscale**
 A character indicating whether the left-hand side Y-axis, which shows the estimated sample sizes in terms of the number of experimental units, should be drawn on the log scale ("log") or the original scale ("original").

- **mmdscale**
 A character indicating whether the X-axis, which shows the minimum meaningful differences to be detected, should be drawn on the log scale ("log") or the original scale ("original").

- **...**
 Additional arguments. Two are currently valid:

 - **nscale**
 A character indicating whether the Y-axis, which shows the estimated sample sizes in terms of the number of experimental units on the left-hand axis, should be drawn on the log scale ("log") or the original scale ("original"). This will override the Nscale argument, which serves the same purpose.

 - **mmdticklabels**
 A list of two components:
 - **mod**
 Can be either of these two values,
 - "replace" Before graphing the data, remove any automatically generated tickmarks for the x-axis, and create the tickmarks specified in the marks component below.
 - "add" Before graphing the data, add tickmarks specified in the marks component below, to the automatically generated ones.
 - **marks**
 A vector of tickmarks to be placed on the x-axis. Any numeric representations will be coerced to character.
nticklabels A list of two components:
 mod Can be either of these two values,
 "replace" Before graphing the data, remove any automatically gen-
 erated tickmarks for the y-axis, and create the tickmarks specified in
 the marks component below.
 "add" Before graphing the data, add tickmarks specified in the marks
 component below, to the automatically generated ones.
 marks A numeric vector of tickmarks to be placed on the y-axis. Any
 numeric representations will be coerced to character.

Details

The minimum and maximum experimental unit sample size values are added inside the plot region
in blue, flush against the y-axis in the top and bottom left corners.

Tick marks are attempted to be chosen wisely. For log-scaled axes in particular, leading digits of
2, 5, and 10 for values are included if possible. Since the algorithm is empirical, the ticklabels
argument is available for further refinement or complete replacement of tickmarks.

The method essentially portrays in a graph the same information shown by the print method of the
cgPairedDifferenceSampleSizeTable object.

Value

samplesizeGraph.cgPairedDifferenceSampleSizeTable returns an invisible NULL. The main
purpose is the side effect of graphing to the current device.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgPairedDifferenceSampleSizeTable

Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1,
logscale=TRUE)

anorexiaFT.fit <- fit(anorexiaFT.data)
The interest is in increased weight for the anorexia FT

(Family treatment) group of patients

```r
anorexiaFT.samplesize <- sample.sizeTable(anorexiaFT.fit, direction="increasing",
                        mmdvec=c(5, 10, 15, 20)) ## print method shows table

sample.sizeGraph(anorexiaFT.samplesize)

classical.sample.size(sample.size, nticklabels=list(mod="add", marks=3))
```

Description

Estimate the sample size required to detect a specified difference in a future study. The estimate is based on the variability in a data fit with the `cg` package.

Usage

```r
sample.sizeTable(fit, direction, mmdvec, power = 0.80,
                    alpha = 0.05, nmax = 1000, display = "print", ...)
```

Arguments

- **fit**: An object created by calling a `fit` method from the `cg` package. There is currently one class of objects that are currently available: `cgOneFactorFit`, which is prepared by the `fit.cgOneFactorData` method.

- **direction**: A character indicating whether the sample size should be estimated to detect an "increase" or a "decrease". This only effects the sample size estimates if the previous study in `fit` was analyzed on the log scale, in which case the differences in `mmdvec` are relative differences instead of absolute differences. For detecting relative changes, the sample size required to detect a relative increase of 25% is not the same as the sample size to detect a relative decrease of 25%, for example. But for detecting absolute changes, the sample size required to detect an absolute increase of 25 is the same as the sample size to detect an absolute decrease of 25.

- **mmdvec**: A numeric vector specifying the minimum meaningful differences to be detected in the future study. If the previous study in `fit` was analyzed on the log scale, then the values in `mmdvec` are assumed to be relative percentage increases or decreases, depending on the value of `direction`. If the previous study in `fit` was not analyzed on the log scale, then the values in `mmdvec` are assumed to be absolute increases or decreases, depending on the value of `direction`. Each value in `mmdvec` needs to be positive.

- **power**: The power for the future study, set by default to be 0.80. This is equivalent to $1 - \beta$, where β is the probability of committing a Type II error: accepting the null hypothesis of no difference when differences truly exist.
samplesizetable

alpha
The significance level or alpha for the future study, set by default as 0.05.

nmax
The maximum number of subjects per group. If more subjects are estimated to
be required, than the exact number required is not reported, only the fact that
more than the maximum number would be required. This is in place to prevent
long and likely unnecessary calculations.

display
One of three valid values:

"print" The default value; It calls a print method for the created samplesizetable
object, which is a formatted text output of the table(s).

"none" Supresses any printing. Useful, for example, when just assignment of
the resulting object is desired.

"show" Calls the default showDefault method, which will just print out the
samplesizetable components.

Additional arguments, depending on the specific method written for the object.
See the method-specific documentation for additional details.

Value
A method-specific SampleSizeTable object is returned. See the specific methods for discussion of
return values.

Note
Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also
samplesizetable, cgOneFactorFit

Examples
One Factor data

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
canine.samplesize <- samplesizetable(canine.fit, direction="increasing",
mmdvec=c(10, 25, 50, 75, 100))
samplesizeGraph(canine.samplesize)
Estimate Sample Sizes based on a cgOneFactorFit object

Description

Estimate the sample size that would be required to detect a specified difference in a one factor study. The estimate is based on the variability that was observed in a previous one factor study. A cgOneFactorSampleSizeTable class object is created.

Usage

```r
## S4 method for signature 'cgOneFactorFit'
sampleSizeTable(fit, direction, mmdvec, 
    power = 0.80, alpha = 0.05, nmax = 1000, display = "print", ...)
```

Arguments

- **fit**: A cgOneFactorFit object from a previous one factor study.
- **direction**: A character value indicating whether the sample size should be estimated to detect an "increase" or a "decrease". This only affects the sample size estimates if the previous study in fit was analyzed on the log scale, in which case the differences in mmdvec are relative differences instead of absolute differences. For detecting relative changes, the sample size required to detect a relative increase of 25% is not the same as the sample size to detect a relative decrease of 25%, for example. But for detecting absolute changes, the sample size required to detect an absolute increase of 25 is the same as the sample size to detect an absolute decrease of 25.
- **mmdvec**: A numeric vector specifying the minimum meaningful differences to be detected in the future study. If the previous study in fit was analyzed on the log scale, then the values in mmdvec are assumed to be relative percentage increases or decreases, depending on the value of direction. If the previous study in fit was not analyzed on the log scale, then the values in mmdvec are assumed to be absolute increases or decreases, depending on the value of direction. Each value in mmdvec needs to be positive.
- **power**: The power for the future study, set by default to be 0.80. This is equivalent to $1 - \beta$, where β is the probability of committing a Type II error: accepting the null hypothesis of no difference when differences truly exist.
- **alpha**: The significance level or alpha for the future study, set by default as 0.05.
- **nmax**: The maximum number of subjects per group. If more subjects are estimated to be required, then the exact number required is not reported, only the fact that more than the maximum number would be required. This is in place to prevent long and likely unnecessary calculations.
- **display**: One of three valid values:
"print" The default value; It calls a print method for the created
cgOneFactorSamplesizeTable object, which is a formatted text output of
the table(s).

"none" Supresses any printing. Useful, for example, when just assignment of
the resulting object is desired.

"show" Calls the default showDefault method, which will just print out the
cgOneFactorSamplesizeTable components.

Additional arguments.

ngrps The number of groups that will be in the future one factor study. The
default is ngrps = 2.

model A character value indicating which variability estimate in fit should
be used to estimate the sample size: the robust model ("rronly"), the clas-
sical model ("olsonly"), or both ("both"). If an estimate is requested for
a model that was not fit, then no sample sizes are returned for that model
but an error is not reported (e.g. if only the classical model was fitted but
"both" are requested, only the classical model estimates will be returned):

"both" Sample Size tables based on both the ordinary classical least
squares and resistant & robust fits are performed. This is the default when both
fits are present in the cgOneFactorFit object specified in the fit arg-
ument. If the resistant & robust fit is not available, this value is not
relevant.

"olsonly" Only a sample size table based on the ordinary classical least
squares olsfit fit is calculated.

"rronly" Only a sample size table based on the resistant and robust rrfit
fit is calculated.

Details

This sample size method does not work for fitted models that allowed unequal variances or censored
observations.

Sample sizes are estimated for detecting a minimum difference with a global F test. The algorithm
is detailed in Fleiss (1986), Appendix A. When there are more than 2 groups, the lower bound of
possible noncentrality parameter values is calculated from assuming only two of the ngrps number
of groups differ by the mmdvec/2 amount from the "grand mean" while the rest of the groups are
equal to the grand mean.

For detecting an absolute difference, the sample size is the smallest group size n for which
1 - pf (qf (1 - alpha, numdf, dendf), numdf, dendf, ncp) exceeds power,
where ncp = (n * mmdvec ^ 2) / (2 * sigamest ^ 2), and sigamest is the residual
mean square error from the model in fit. For detecting a relative difference, the calculations are
the same except
ncp = (n * (log (sign * mmdvec / 100 + 1)) ^ 2) / (2 * sigamest ^ 2), where
sign = -1 if direction="decreasing", and sign = 1 if direction = "increasing".

Value

Creates an object of class cgOneFactorSampleSizeTable, with the following slots:
ols.sstable A matrix with the estimated sample sizes based on the classical model variance estimates, or NULL. The matrix has 3 columns and one row for each element of the mmdvec vector. The first column specifies the minimum meaningful difference ("mmd"). The second column gives the number of subjects required for each group ("n"), possibly truncated at nmax. The third column gives the total number of subjects required ("N"), also truncated if nmax is truncated.

rr.sstable A matrix with the estimated sample sizes based on the robust model variance estimates, or else NULL if model="olsonly" was specified. See the ols.sstable slot description above for the analogous layout of the matrix.

settings A list of properties mostly carried as-is from the data argument object of class cgOneFactorData, with the following additional members:

 sigmaest A list with 2 members, ols, containing the estimated spread (sigma, standard deviation) from the classical model of fit, and rr, containing the estimated spread (sigma, standard deviation) from the robust model of fit, or NULL if the robust model was not fit.

 planningname A character describing the study or purpose of the sample size analysis.

 Taken from the settings$analysisname of the fit object.

 ngrps A saved copy of the ngrps argument.

 direction A saved copy of the direction argument.

 alpha A saved copy of the alpha argument.

 power A saved copy of the power argument.

 nmax A saved copy of the nmax argument.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

References

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")

 canine.fit <- fit(canine.data)

 canine.samplesize <- samplesizeTable(canine.fit, direction="increasing",
 mmdvec=c(10, 25, 50, 75, 100))

 samplesizeTable(canine.fit, direction="decreasing",

samplesizeTable.cgPairedDifferenceFit

Estimate Sample Sizes based on a cgPairedDifferenceFit object

Description

Estimate the sample size that would be required to detect a specified difference in a paired difference data study. The estimate is based on the variability that was observed in a previous paired difference data study. A cgPairedDifferenceSampleSizeTable class object is created.

Usage

S4 method for signature 'cgPairedDifferenceFit'
samplesizeTable(fit, direction, mmdvec,
 power = 0.80, alpha = 0.05, nmax = 1000, display = "print", ...)

Arguments

- `fit`: A cgPairedDifferenceFit object from a previous paired difference data study.
- `direction`: A character value indicating whether the sample size should be estimated to detect an "increase" or a "decrease". This only effects the sample size estimates if the previous study in fit was analyzed on the log scale, in which case the differences in mmdvec are relative differences instead of absolute differences. For detecting relative changes, the sample size required to detect a relative increase of 25% is not the same as the sample size to detect a relative decrease of 25%, for example. But for detecting absolute changes, the sample size required to detect an absolute increase of 25 is the same as the sample size to detect an absolute decrease of 25.
- `mmdvec`: A numeric vector specifying the minimum meaningful differences to be detected in the future study. If the previous study in fit was analyzed on the log scale, then the values in mmdvec are assumed to be relative percentage increases or decreases, depending on the value of direction. If the previous study in fit was not analyzed on the log scale, then the values in mmdvec are assumed to be absolute increases or decreases, depending on the value of direction. Each value in mmdvec needs to be positive.
- `power`: The power for the future study, set by default to be 0.80. This is equivalent to $1 - \beta$, where β is the probability of committing a Type II error: accepting the null hypothesis of no difference when a difference truly exists.
- `alpha`: The significance level or alpha for the future study, set by default as 0.05.
- `nmax`: The maximum number of subjects per group. If more subjects are estimated to be required, than the exact number required is not reported, only the fact that more than the maximum number would be required. This is in place to prevent long and likely unnecessary calculations.
display One of three valid values:

"print" The default value; it calls a print method for the created
cgPairedDifferenceSamplesizeTable object, which is a formatted text
output of the table(s).

"none" Supresses any printing. Useful, for example, when just assignment of
the resulting object is desired.

"show" Calls the default showDefault method, which will just print out the
cgPairedDifferenceSamplesizeTable components.

Additional arguments. Only one is currently valid:

correction Other than the NULL value, only the "df" value can be specified.
This "df" values provides a degrees of freedom correction for using variance
estimates based on different degrees of freedom. See details below.

Details

Here, the estimated sample size actually refers to the number of experimental units. Hence the
number of observations will always be twice the number of experimental units, due to the paired
structure.

This sample size method only works for the classical least squares fitted model, since there is no
analogous decomposition of total variance into between-experimental unit and within-experimental
unit variance components. Sample sizes are estimated for detecting a minimum difference with the
classical least squares t-test / F-test.

The **correction** = "df" argument specifies a method that Fleiss (1986, pages 129-130) attributes
to Cochran and Cox (1957) and Fisher. The correction decreases the relative efficiency that is calcu-
lated from accounting for correlated paired observations, relative to the unpaired two group design.
The adjustment accounts for the different degrees of freedom used for the variance components in
the paired design (between-experimental unit, within-experimental unit, total variability.)

Since the correction reduces the relative efficiency, and the noncentrality parameter is also reduced.
The correction is a multiplicative factor bounded below by 0.833 and approaches 1 as the number
of experimental units increments from the minimum of n=2. The reduction in the noncentrality
parameter increases the computed sample size.

Value

Creates an object of class cgPairedDifferenceSampleSizeTable, with the following slots:

ols.sstable A matrix with the estimated experimental unit sample sizes based on the classical
model variance estimates. The matrix has 3 columns and one row for each element of the
mmdvec vector. The first column specifies the minimum meaningful difference ("mmd"). The
second column gives the number of experimental units ("n") required, possibly truncated at
nmax. The third column gives the total number of observations ("N"), also possibly truncated
at nmax. Since this for the paired groups design, N = n * 2 will always hold.

settings A list of properties mostly carried as-is from the data argument object of class cgPairedDifferenceData,
with the following additional members:

sigmaest A list with 1 member, ols, containing the estimated spread (sigma, standard devi-
ation) variance estimates from the classical model of fit. This list component is a vector
of length 3, providing the within-experimental unit, between experimental unit, and total variability estimates.

planningname A character describing the study or purpose of the sample size analysis. Taken from the settings$analysisname of the fit object.
direction A saved copy of the direction argument.
alpha A saved copy of the alpha argument.
power A saved copy of the power argument.
nmax A saved copy of the nmax argument.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis, John Oleynick, and Eva Ye

References

Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCPairedDifferenceData(anorexiaFT, format="groupcolumns",
 analysisname="Anorexia FT",
 endptname="Weight",
 endptunits="lbs",
 expunitname="Patient",
 digits=1,
 logscale=TRUE)
anorexiaFT.fit <- fit(anorexiaFT.data)

Recall the interest is in increased weight for the anorexia FT
(family treatment) group of patients
samplesizeTable(anorexiaFT.fit, direction="increasing",
 mmdvec=c(5, 10, 15, 20))

and with the adjustment on the noncentrality parameter
samplesizeTable(anorexiaFT.fit, direction="increasing",
 mmdvec=c(5, 10, 15, 20), correction="df")
show.cgOneFactorComparisonsTable

Show a One Factor Comparisons Table object from the cg package

Description

Show a cgOneFactorComparisonsTable object, which contains information of comparisons based on a fit in a cgOneFactorFit object.

Usage

S4 method for signature 'cgOneFactorComparisonsTable'

show(object)

Arguments

object A cgOneFactorComparisonsTable object, typically created by comparisonsTable.cgOneFactorFit.

Details

The object is shown using showDefault. See cgOneFactorComparisonsTable for details of the object slots.

Value

show.cgOneFactorComparisonsTable returns invisible. The main purpose is the side effect of printing the whole object to the current output connection, which is typically the console.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgOneFactorComparisonsTable, showDefault

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endpointname="Prostate Volume",
 endpointunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")
show.cgOneFactorDescriptiveTable

Show a One Factor Descriptive Table object from the cg package

Description

Show a cgOneFactorDescriptiveTable object, which contains a table of quantiles and other summary statistics of the data from a cgOneFactorData object.

Usage

S4 method for signature 'cgOneFactorDescriptiveTable'
show(object)

Arguments

object A cgOneFactorDescriptiveTable object, typically created by descriptiveTable.cgOneFactorData.

Details

The object is shown using showDefault. See cgOneFactorDescriptiveTable for details of the object slots.

Value

show.cgOneFactorDescriptiveTable returns invisible. The main purpose is the side effect of printing the whole object to the current output connection, which is typically the console.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgOneFactorDescriptiveTable, showDefault
show.cgOneFactorDownweightedTable

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
digits=1, logscale=TRUE, refgrp="CC")

show(descriptiveTable(canine.data, display="none"))

Censored Data
data(gmcsfcens)
gmcsfcens.data <- prepareCGOneFactorData(gmcsfcens, format="groupcolumns",
analysisname="cytokine",
endptname="GM-CSF (pg/ml)",
logscale=TRUE)

show(descriptiveTable(gmcsfcens.data, display="none"))

show.cgOneFactorDownweightedTable
 Show a One Factor Downweighted Table object from the cg package

Description

Show a cgOneFactorDownweightedTable object, which contains information of downweighted
observations in a resistant & robust fit from a cgOneFactorFit object.

Usage

S4 method for signature 'cgOneFactorDownweightedTable'
show(object)

Arguments

 object A cgOneFactorDownweightedTable object, typically created by
downweightedTable.cgOneFactorFit.

Details

The object is shown using showDefault. See cgOneFactorDownweightedTable for details of the
object slots.

Value

show.cgOneFactorDownweightedTable returns invisible. The main purpose is the side effect
of printing the whole object to the current output connection, which is typically the console.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.
Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also
cgOneFactorDownweightedTable, showDefault

Examples
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
show(downweightedTable(canine.fit, cutoffwt=0.95, display="none"))

show.cgOneFactorGlobalTest

Show a Global Test object from the cg package

Description

Show a cgOneFactorGlobalTest object, which contains p-value information from a cgOneFactorFit object.

Usage

S4 method for signature 'cgOneFactorGlobalTest'
show(object)

Arguments

object A cgOneFactorGlobalTest object, typically created by
globalTest.cgOneFactorFit.

Details

The object is shown using showDefault. See cgOneFactorGlobalTest for details of the object slots.

Value

show.cgOneFactorGlobalTest returns invisible. The main purpose is the side effect of printing the whole object to the current output connection, which is typically the console.
show.cgOneFactorGrpSummaryTable

Note
Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also
cgOneFactorGlobalTest, showDefault

Examples
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
globalTest(canine.fit, display="show")
show(globalTest(canine.fit, display="none"))

show.cgOneFactorGrpSummaryTable

Show a One Factor Group Summary Table object from the cg package

Description
Show a cgOneFactorGrpSummaryTable object, which contains information of group mean and standard error summaries based on a fit in a cgOneFactorFit object.

Usage
S4 method for signature 'cgOneFactorGrpSummaryTable'
show(object)

Arguments

object A cgOneFactorGrpSummaryTable object, typically created by

grpSummaryTable.cgOneFactorFit.

Details
The object is shown using showDefault. See cgOneFactorGrpSummaryTable for details of the object slots.
show.cgOneFactorSampleSizeTable

Value

`show.cgOneFactorGrpSummaryTable` returns `invisible`. The main purpose is the side effect of printing the whole object to the current output connection, which is typically the console.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

`cgOneFactorGrpSummaryTable`, `showDefault`

Examples

```r
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
                                  analysisname="Canine",
                                  endptname="Prostate Volume",
                                  endptunits=expression(plain(cm)^3),
                                  digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
show(grpSummaryTable(canine.fit, display="none"))
```

show.cgOneFactorSampleSizeTable

Show a One Factor Sample Size Table object from the cg package

Description

Show a `cgOneFactorSampleSizeTable` object, which contains a table of sample size estimates based on a `cgOneFactorFit` object.

Usage

```r
## S4 method for signature 'cgOneFactorSampleSizeTable'
show(object)
```

Arguments

- `object` A `cgOneFactorSampleSizeTable` object, typically created by `samplesizeTable.cgOneFactorFit`.
show.cgPairedDifferenceComparisonsTable

Details
The object is shown using `showDefault`. See `cgOneFactorSampleSizeTable` for details of the object slots.

Value
`show.cgOneFactorSampleSizeTable` returns `invisible`. The main purpose is the side effect of printing the whole object to the current output connection, which is typically the console.

Note
Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also
`cgOneFactorSampleSizeTable, showDefault`

Examples
```r
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
  analysisname="Canine",
  endptname="Prostate Volume",
  endptunits=expression(plain(cm)^3),
  digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
show(samplesizetable(canine.fit, direction="increasing",
  mmdvec=c(25, 50, 75, 100), display="none"))
```

Description
Show a `cgPairedDifferenceComparisonsTable` object, which contains information of comparisons based on a fit in a `cgPairedDifferenceFit` object.

Usage
```r
## S4 method for signature 'cgPairedDifferenceComparisonsTable'
show(object)
```
show.cgPairedDifferenceCorrelationTable

Arguments

object A cgPairedDifferenceComparisonsTable object, typically created by comparisonsTable.cgPairedDifferenceFit.

Details

The object is shown using showDefault. See cgPairedDifferenceComparisonsTable for details of the object slots.

Value

show.cgPairedDifferenceComparisonsTable returns invisible. The main purpose is the side effect of printing the whole object to the current output connection, which is typically the console.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgPairedDifferenceComparisonsTable, showDefault

Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1,
logscale=TRUE)
anorexiaFT.fit <- fit(anorexiaFT.data)
show(comparisonsTable(anorexiaFT.fit, display="none"))

show.cgPairedDifferenceCorrelationTable

Show a Paired Difference Correlation Table object from the cg package

Description

Show a cgPairedDifferenceCorrelationTable object, which contains a table of correlations of the data from a cgPairedDifferenceData object.
Usage

```r
## S4 method for signature 'cgPairedDifferenceCorrelationTable'
show(object)
```

Arguments

- `object`: A `cgPairedDifferenceCorrelationTable` object, typically created by `correlationTable.cgPairedDifferenceData`.

Details

The object is shown using `showDefault`. See `cgPairedDifferenceCorrelationTable` for details of the object slots.

Value

`show.cgPairedDifferenceCorrelationTable` returns `invisible`. The main purpose is the side effect of printing the whole object to the current output connection, which is typically the console.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

- `cgPairedDifferenceCorrelationTable`, `showDefault`

Examples

```r
data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1,
logscale=TRUE)

## Next two calls are equivalent
correlationTable(anorexiaFT.data, display="show")
show(correlationTable(anorexiaFT.data, display="none"))
```
show.cgPairedDifferenceDescriptiveTable

Show a Paired Difference Descriptive Table object from the cg package

Description

Show a cgPairedDifferenceDescriptiveTable object, which contains a table of quantiles and other summary statistics of the data from a cgPairedDifferenceData object.

Usage

```r
## S4 method for signature 'cgPairedDifferenceDescriptiveTable'
show(object)
```

Arguments

- `object`: A `cgPairedDifferenceDescriptiveTable` object, typically created by `descriptivetable.cgPairedDifferenceData`.

Details

The object is shown using `showDefault`. See `cgPairedDifferenceDescriptiveTable` for details of the object slots.

Value

`show.cgPairedDifferenceDescriptiveTable` returns `invisible`. The main purpose is the side effect of printing the whole object to the current output connection, which is typically the console.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgPairedDifferenceDescriptiveTable, showDefault

Examples

```r
data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
```
show.cgPairedDifferenceDownweightedTable

digits=1,
logscale=TRUE)

Next two calls are equivalent
descriptiveTable(anorexiaFT.data, display="show")

show(descriptiveTable(anorexiaFT.data, display="none"))

show.cgPairedDifferenceDownweightedTable

Show a Paired Difference Downweighted Table object from the cg package

Description

Show a cgPairedDifferenceDownweightedTable object, which contains information of down-weighted observations in a resistant & robust fit from a cgPairedDifferenceFit object.

Usage

S4 method for signature 'cgPairedDifferenceDownweightedTable'
show(object)

Arguments

object A cgPairedDifferenceDownweightedTable object, typically created by
downweightedTable.cgPairedDifferenceFit.

Details

The object is shown using showDefault. See cgPairedDifferenceDownweightedTable for details of the object slots.

Value

show.cgPairedDifferenceDownweightedTable returns invisible. The main purpose is the side effect of printing the whole object to the current output connection, which is typically the console.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]
Show a Paired Difference Sample Size Table object from the cg package

Description
Show a `cgPairedDifferenceSampleSizeTable` object, which contains a table of sample size estimates based on a `cgPairedDifferenceFit` object.

Usage
```r
## S4 method for signature 'cgPairedDifferenceSampleSizeTable'
show(object)
```

Arguments
- `object` A `cgPairedDifferenceSampleSizeTable` object, typically created by `samplesizeTable.cgPairedDifferenceFit`.

Details
The object is shown using `showDefault`. See `cgPairedDifferenceSampleSizeTable` for details of the object slots.

Value
- `show.cgPairedDifferenceSampleSizeTable` returns `invisible`. The main purpose is the side effect of printing the whole object to the current output connection, which is typically the console.

Note
- Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.
show.cgPairedDifferenceVarianceTable

Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgPairedDifferenceSampleSizeTable, showDefault

Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1,
logscale=TRUE)

anorexiaFT.fit <- fit(anorexiaFT.data)

Recall the interest is in increased weight for the anorexia FT
(family treatment) group of patients
show(samplesizetable(anorexiaFT.fit, direction="increasing",
 mmdvec=c(5, 10, 15, 20), display="none"))

Description

Show a cgPairedDifferenceVarianceTable object, which contains a table of variances from a
cgPairedDifferenceFit object.

Usage

S4 method for signature 'cgPairedDifferenceVarianceTable'
show(object)

Arguments

object A cgPairedDifferenceVarianceTable object, typically created by
varianceTable.cgPairedDifferenceFit.

Details

The object is shown using showDefault. See cgPairedDifferenceVarianceTable for details of
the object slots.
Value

show.cgPairedDifferenceVarianceTable returns invisible. The main purpose is the side effect of printing the whole object to the current output connection, which is typically the console.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgPairedDifferenceVarianceTable, showDefault

Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns", analysisname="Anorexia FT", endptname="Weight", endptunits="lbs", expunitname="Patient", digits=1, logscale=TRUE)

anorexiaFT.fit <- fit(anorexiaFT.data)

Next two calls are equivalent
varianceTable(anorexiaFT.fit, display="show")

show(varianceTable(anorexiaFT.fit, display="none"))

showObj

Show raw form of an object from the cg package

Description

Show the raw form of an object from the cg package.

Usage

showObj(object)

Arguments

object An object created by the cg package.
The object raw form is shown using `showDefault`. The name `showobj` is designed for use when the conventional `show` name is an alias for `print` in the cg package.

A method-specific `fit` object is returned. See the specific methods for discussion of return values.

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

`cgOneFactorFit`, `cgPairedDifferenceFit`, `showDefault`

Examples

```r
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
  analysisname="Canine",
  endptname="Prostate Volume",
  endptunits=expression(plain(cm)^3),
  digits=1, logscale=TRUE, refgrp="CC")

canine.fit <- fit(canine.data)

showObj(canine.fit)
```

`showObj.cgOneFactorFit`

Show a Fitted Model object from the cg package

Description

Show the raw form of a `cgOneFactorFit` object, which contains model fit information.

Usage

```r
## S4 method for signature 'cgOneFactorFit'
showObj(object)
```

Arguments

- `object`: A `cgOneFactorFit` object.
Details

The object is shown using `showDefault`. See `cgOneFactorFit` for details of the object slots.
The name `showObj` is designed for use for cases like this when the conventional `show` name is an alias for `print`.

Value

`showObj.cgOneFactorFit` returns `invisible`. The main purpose is the side effect of printing the whole object to the current output connection, which is typically the console.

Note

Contact `<cg@billpikounis.net>` for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

`cgOneFactorFit, showDefault`

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)

showObj(canine.fit)

show(canine.fit) ## alias for print method on the object

```
showObj.cgPairedDifferenceFit

Show a Fitted Model object from the cg package
```

Description

Show the raw form of a `cgPairedDifferenceFit` object, which contains model fit information.

Usage

```
## S4 method for signature 'cgPairedDifferenceFit'
showObj(object)
```
showObj.cgPairedDifferenceFit

Arguments

object A cgPairedDifferenceFit object.

Details

The object is shown using showDefault. See cgPairedDifferenceFit for details of the object slots.

The name showObj is designed for use for cases like this when the conventional show name is an alias for print.

Value

showObj.cgPairedDifferenceFit returns invisible. The main purpose is the side effect of printing the whole object to the current output connection, which is typically the console.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgOneFactorFit, cgPairedDifferenceFit, showDefault

Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns", analysisname="Anorexia FT", endptname="Weight", endptunits="lbs", expunitname="Patient", digits=1, logscale=TRUE)
anorexiaFT.fit <- fit(data=anorexiaFT.data, type="rr")

showObj(anorexiaFT.fit)

show(anorexiaFT.fit) ## alias for print method on the object
summary.cgOneFactorFit

Summary display of a One Factor Model Fit object with some format options

Description

Summary printing of a cgOneFactorFit object, which contains fitted model information.

Usage

```r
## S4 method for signature 'cgOneFactorFit'
summary(object, title = NULL, endptname = NULL, ...)```

**Arguments**

- `object` An cgOneFactorFit object.
- `title` The title printed out with the summary of the fitted model(s). If NULL, it is set to be "Fitted Model Summaries of" the analysisname value in the settings slot of the cgOneFactorFit object.
- `endptname` The endpoint name, printed out with the fitted model information. If NULL, it is set to the endptname value in the settings slot of the cgOneFactorFit object.
- `...` Additional arguments. Only one is currently valid:
  - `model` For cgOneFactorFit objects that have output derived from classical least squares `lm` or resistant & robust `rlm` fits, the following argument values are possible:
    - "both" Both the ordinary classical least squares and resistant & robust model fit summaries are printed. This is the default when both fits are present in the cgOneFactorFit object specified in the object argument.
    - "olsonly" Only the ordinary classical least squares model fit summary is printed.
    - "rronly" Only the resistant & robust model fit summary is printed.

For other possible cgOneFactorFit components such as accelerated failure time or unequal variance model fits, the model argument is not relevant, and the single model fit summary is printed for these model types.

**Details**

The object summary is printed using a mix of `cat` and `print` calls. See `cgOneFactorFit` for details of the *fit and other object slots.

This method simply echoes summary methods for individual fit classes, such as `lm` and `rlm`. 
Value

summary.cgOneFactorFit returns invisible. The main purpose is the side effect of printing to the current output connection, which is typically the console.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

cgOneFactorFit

Examples

data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
   analysisname="Canine",
   endptname="Prostate Volume",
   endptunits=expression(plain(cm)^3),
   digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
summary(canine.fit)

summary.cgPairedDifferenceFit

Summary display of a Paired Difference Model Fit object with some format options

Description

Summary printing of a cgPairedDifferenceFit object, which contains fitted model information.

Usage

## S4 method for signature 'cgPairedDifferenceFit'
summary(object, title = NULL, endptname = NULL, ...)


summary.cgPairedDifferenceFit

**Arguments**

- **object**
  An `cgPairedDifferenceFit` object.

- **title**
  The title printed out with the summary of the fitted model(s). If NULL, it is set to be "Fitted Model Summaries of" the `analysisname` value in the `settings` slot of the `cgPairedDifferenceFit` object.

- **endptname**
  The endpoint name, printed out with the fitted model information. If NULL, it is set to the `endptname` value in the `settings` slot of the `cgPairedDifferenceFit` object.

- **model**
  Additional arguments. Only one is currently valid:
  - "both": Both the ordinary classical least squares `lm` or resistant & robust `rlm` fits, the following argument values are possible:
    - "both": Both the ordinary classical least squares and resistant & robust model fit summaries are printed. This is the default when both fits are present in the `cgPairedDifferenceFit` object specified in the `object` argument.
    - "olsonly": Only the ordinary classical least squares model fit summary is printed.
    - "rronly": Only the resistant & robust model fit summary is printed.

**Details**

The object summary is printed using a mix of `cat` and `print` calls. See `cgPairedDifferenceFit` for details of the *fit and other object slots.

This method simply echoes summary methods for individual fit classes, such as `lm` and `rlm`.

**Value**

`summary.cgPairedDifferenceFit` returns `invisible`. The main purpose is the side effect of printing to the current output connection, which is typically the console.

**Note**

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

**Author(s)**

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

**See Also**

`cgPairedDifferenceFit`
Examples

```r
data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1, logscale=TRUE)

anorexiaFT.fit <- fit(anorexiaFT.data)

summary(anorexiaFT.fit)
```

---

**Variance Graphs**

**Description**

Create an equal variance assessment graph of the residuals of a fitted object from the `cg` package.

**Usage**

```r
varianceGraph(fit, trend = NULL, cgtheme = TRUE, device = "single", ...)
```

**Arguments**

- `fit` A fit object, typically created by the `fit` generic function.
- `trend` Add a trend line to help assess the trend of the residuals. See specific method written for the `fit` argument.
- `cgtheme` When set to the default `TRUE`, ensures a trellis device is active with limited color scheme. Namely `background`, `strip.shingle`, and `strip.background` are each set to "white".
- `device` Can be one of three values:
  - "single" The default, which will put all graphs on the same device page.
  - "multiple" Relevant only when multiple fitted models are present in the `fit` object and requested to be plotted. In those cases, a new graphics device is generated to hold each additional plot beyond the first.
  - "ask" Relevant only when multiple fitted models are present in the `fit` object and requested to be plotted. In these cases, each plot is portrayed as a single-paneled graph, with the `ask=TRUE` argument specified in `par` so that the user input confirmation is needed before the graphs are drawn.
- `...` Additional arguments, depending on the specific method written for the object. See the method-specific documentation for additional details.
Details
The graphs plot the square root of the absolute value of the residuals against the fitted value. The notion of using the squared root of the absolute residuals is attributed to John Tukey.

Value
varianceGraph returns an invisible NULL. The main purpose is the side effect of graphing to the current device.

Note
Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)
Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also
varianceGraph.cgOneFactorFit

Examples
```r
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
 analysisname="Canine",
 endptname="Prostate Volume",
 endptunits=expression(plain(cm)^3),
 digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
varianceGraph(canine.fit)
varianceGraph(canine.fit, model="olsonly")
```

---

varianceGraph.cgOneFactorFit

*Equal Variance Graphs assessment of cgOneFactorFit object*

Description
Graph residuals of a cgOneFactorFit object to assess equal variance assumption

Usage
```r
S4 method for signature 'cgOneFactorFit'
varianceGraph(fit, trend = NULL, cgtheme = TRUE,
 device = "single", ...)
```
Arguments

- **fit**: A fit object of class `cgOneFactorFit`.
- **trend**: Add a trend line. When set to the default NULL, the addition of a trend line depends on the following: When there is no censored data, a trend will be added with the `lowess` smoother. If any censored data residuals are present, then at least 7 groups are needed in the fit for a trend line to be added with the `VGAM::vgam` smoothing spline. Otherwise, group means are estimated and connected. The values of FALSE and TRUE override this. See Details section below.
- **cgtheme**: When set to the default TRUE, ensures a trellis device is active with limited color scheme. Namely `background`, `stripNshingle`, and `stripNbackground` are each set to "white".
- **device**: Can be one of three values:

  - "single" The default, which will put all graphs on the same device page. For example, when resistant & robust and classical least squares are present and `model="both"` (the default), a 2 x 1 paneled graph will be created.
  - "multiple" Relevant only when resistant & robust and classical least squares are present and `model="both"` (the default) or `model="extended"`. In those cases, a new graphics device is generated to hold the resistant & robust version, as a single-paneled graph, and the classical least squares version is on the previous device. If `model="extended"`, then a second new graphics device is generated to hold the unweighted resistant & robust residuals, as another single-paneled graph.
  - "ask" Relevant only when resistant & robust and classical least squares are present and `model="both"` (the default) or `model="extended"`. In that case, each are portrayed as a single-paneled graph, with the `ask=TRUE` argument specified in `par` so that the user input confirmation is needed before the graphs are drawn.

Additional arguments. Two are currently valid:

- **model**: For `cgOneFactorFit` fit objects that have classical least squares `lm()` or resistant & robust `rlm()` fits, the following argument values are possible:

  - "both" Graphs of the residuals from both the ordinary classical least squares and resistant & robust fits are plotted. This is the default when both fits are present in the `cgOneFactorFit` object specified in the `fit` argument. If the resistant & robust fit is not available, this value is not relevant.
  - "olsonly" Only a graph of the residuals from the ordinary classical least squares `olsfit` fit is performed.
  - "rronly" or "rwwtXonly" Only a graph of the weighted residuals from the resistant and robust `rrfit` fit is plotted.
  - "rrunwXonly" Only a graph of the unweighted residuals from the resistant and robust `rrfit` fit is plotted.

For other possible `cgOneFactorFit` fit slots such as accelerated failure time or unequal variance models, the `model` argument is not relevant, and the appropriate graph will be plotted for these model types.
Details

The graph plots the square root of the absolute value of the residuals against the fitted value. The square root spacing on the y-axis has tick marks in the fitted scale. The notion of using the squared root of the absolute residuals is attributed to John Tukey.

The values are automatically jittered to minimize overlapping points. For censored data, left-censored values are shown as a shallow "V", which is actually just a rotated downward "<" sign. Similarly, right-censored values are shown as a deeper "^", which is a rotated upward ">" sign.

For the trend argument, an added trend line when censored data residuals are present needs to be interpreted cautiously. When there are 7 or more groups, a cubic smoothing spline based on VGAM::vgam is fit; otherwise, the group means of the residuals are estimated with an accelerated failure time model and then just connected. If "too many" censored data values are present, the line may be withheld and warnings will be issued, or if forced with line=TRUE, for example, may appear nonsensical.

The heading for the graph is taken from the cgOneFactorData object, which prepareCGOneFactorData sets from its analysisname argument.

The label for the Y-axis is taken from the cgOneFactorData object, which prepareCGOneFactorData sets from its endptname argument.

The number of decimal places printed in the ticks on the Y-axis is taken from the cgOneFactorData object, which prepareCGOneFactorData sets from its digits argument.

The minimum and maximum values from the range of the absolute valued residuals are respectively labeled in the bottom and top left corners of the graph region.

If group labels along the x-axis seem to overlap in the standard horizontal form, they will be rotated 45 degrees.

Value

varianceGraph.cgOneFactorFit returns an invisible NULL. The main purpose is the side effect of graphing to the current device.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

Examples

```r
From running examples of cgOneFactorData objects
data(canine)
canine.data <- prepareCGOneFactorData(canine, format="groupcolumns",
analysisname="Canine",
endptname="Prostate Volume",
endptunits=expression(plain(cm)^3),
digits=1, logscale=TRUE, refgrp="CC")
canine.fit <- fit(canine.data)
```
Compute Variance Components

Description

Create a table of variances from a cg fit object.

Usage

varianceTable(fit, display = "print", ...)

Arguments

fit A fit object created and prepared (see prepare) using the cg package.
display One of three valid values:
  "print" The default value; It calls a print method for the created varianceTable object, which is a formatted text output of the table.
  "none" Supresses any printing. Useful, for example, when just assignment of the resulting object is desired.
  "show" Calls the default showDefault method, which will just print out the varianceTable components.
... Additional arguments. Currently none are valid.
A method-specific varianceTable object is returned. See the specific methods for discussion of return values.

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

See Also

varianceTable.cgPairedDifferenceFit

Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns",
analysisname="Anorexia FT",
endptname="Weight",
endptunits="lbs",
expunitname="Patient",
digits=1,
logscale=TRUE)
anorexiaFT.fit <- fit(data=anorexiaFT.data)
varianceTable(anorexiaFT.fit)
Arguments

fit A cgPairedDifferenceFit object, typically created by fit.cgPairedDifferenceData.
display One of three valid values:
"print" The default value; It calls a print method for the created
cgPairedDifferenceVarianceTable object, which is a formatted text output of the table.
"none" Supresses any printing. Useful, for example, when just assignment of
the resulting object is desired.
"show" Calls the default showDefault method, which will just print out the
cgPairedDifferenceVarianceTable object components.

... Additional arguments. Currently none are valid.

Details

The returned table contains variance component estimates for the classical least squares fit. There is
no analogous decomposition of variance component estimates calculated for the resistant & robust
fit.

Value

Creates an object of class cgPairedDifferenceVarianceTable, with the following slots:

contents The table of variance component estimates. There are two, the "within experimen-
tal unit" variance and the "between experimental unit" variance. See below for the data
frame structure of the table. The label portion "experimental unit" will be replaced by the
expunitname component of the settings slot of the cgPairedDifferenceFit fit object, if
previously specified.

efficiency A table of efficiency estimates, derived from the variance component estimates. The
goal is to quantify the reduced number of experimental units needed since a paired difference
design was employed, instead of an unpaired design. See below for the data frame structure
of the table.

settings A list of settings carried from the cgPairedDifferenceFit fit object. These are used
for the print.cgPairedDifferenceVarianceTable method, invoked for example when display="print".

The data frame structure of the variance components table from the classical least squares fit is
provided in the contents slot. The data frame consists of row.names based on the expunitname
component of the settings slot in the cgPairedDifferenceFit fit object. The first row is for the
"within" component, and the second is for the "between" component. The "total" variance is in the
third row of the table, the sum of the between and within variance components. The first column
of the table is the variance components estimates, and the third column is the square root of the
variance components, labeled Spread(StdDev). In the second column is the Percent calculation
of the two variance components relative to the total sum variance.

The data frame structure of the efficiency table from the classical least squares fit is provided in the
efficiency slot. There are four rows and one column. All values are derived from the variance
components estimates in the contents slot described above. The first row of Relative Efficiency
comes from dividing the total variance by the between experimental unit variance component. The
second row expresses the estimated gain in sensitivity by using a paired difference design and analysis over using a unpaired design and analysis. This is equal to the within experimental unit variance component divided by the total variance, and is expressed here as Percent Reduction. The third row is the number of experimental units based on the input data set paired structure. The last row contains the estimated number of unpaired design experimental units that would have been needed for the same sensitivity. The label portion "experimental unit" in these last two row names will be replaced by the expunitname component of the settings slot of the `cgPairedDifferenceFit` fit object if previously specified.

Note

Contact <cg@billpikounis.net> for bug reports, questions, concerns, and comments.

Author(s)

Bill Pikounis [aut, cre, cph], John Oleynick [aut], Eva Ye [ctb]

Examples

data(anorexiaFT)
anorexiaFT.data <- prepareCGPairedDifferenceData(anorexiaFT, format="groupcolumns", analysisname="Anorexia FT", endptname="Weight", endptunits="lbs", expunitname="Patient", digits=1, logscale=TRUE)

anorexiaFT.fit <- fit(anorexiaFT.data)

varianceTable(anorexiaFT.fit)
Index

**Topic datagen**
prepare, 87
prepareCGOneFactorData, 88
prepareCGPairedDifferenceData, 93

**Topic datasets**
anorexiaFT, 6
canine, 9
canine.listfmt, 10
cgLineColors, 13
gmcsfcens, 71
gmcsfcens.listfmt, 72

**Topic models**
fit, 62
fit.CGOneFactorData, 63
fit.CGPairedDifferenceData, 66

**Topic package**
cg-package, 3

aftfit-class(cgInternalClasses), 12
anorexia, 6, 7
anorexiaFT, 6

blockDiag(cgInternalUtilities), 12
boxplot, CGOneFactorData-method
(boxplot.CGOneFactorData), 7
boxplot.CGOneFactorData, 7
boxplot.default, 7, 48
boxplotcensoredData
(CGInternalUtilities), 12
boxplotStamp(cgInternalUtilities), 12

canine, 9, 11, 92
canine.listfmt, 9, 10, 10
catCharExpr(cgInternalUtilities), 12
cg(cg-package), 3
cg-package, 3
cg.largest.empty(cgInternalUtilities), 12
cgDevice(cgInternalUtilities), 12
cgInternalClasses, 12
cgInternalUtilities, 12
cgLineColors, 13, 80, 82
cgMessage(cgInternalUtilities), 12
cgOneFactorComparisonsTable, 19, 23, 24, 61, 97, 142
cgOneFactorComparisonsTable
(comparisonsTable.cgOneFactorFit), 29
cgOneFactorComparisonsTable-class
(comparisonsTable.cgOneFactorFit), 29
cgOneFactorData, 7, 8, 11, 41, 42, 64, 65, 73, 80, 84, 85, 138, 165
cgOneFactorData
(prepareCGOneFactorData), 88
cgOneFactorData-class
(prepareCGOneFactorData), 88
cgOneFactorDescriptiveTable, 99, 143
cgOneFactorDescriptiveTable
(descriptiveTable.cgOneFactorData), 41
cgOneFactorDescriptiveTable-class
(descriptiveTable.cgOneFactorData), 41
cgOneFactorDownweightedTable, 100, 101, 144, 145
cgOneFactorDownweightedTable
(downweightedTable.cgOneFactorFit), 51
cgOneFactorDownweightedTable-class
(downweightedTable.cgOneFactorFit), 51
cgOneFactorFit, 30–32, 51, 52, 60, 61, 63, 68–70, 75, 77, 78, 101, 102, 115, 123, 134, 136, 156–160, 164
cgOneFactorFit(cgOneFactorData), 63
cgOneFactorFit-class
(fit.cgOneFactorData), 63
cgOneFactorGlobalTest, 103, 104, 145, 146
INDEX

171

100x712

100x684

100x659

100x635

100x610

100x598

100x574

100x550

100x537

100x513

100x491

100x465

100x440

100x416

100x392

100x367

100x343

100x320

100x296

100x272

100x248

100x224

100x200

100x176

100x152

100x128

100x104

100x80

100x56

cgOneFactorGlobalTest  
  (globalTest.cgOneFactorFit), 69

100x712

100x672

100x647

100x623

100x598

100x574

100x550

100x537

100x513

100x491

100x465

100x440

100x416

100x392

100x367

100x343

100x320

100x296

100x272

100x248

100x224

100x200

100x176

100x152

100x128

100x104

100x80

100x56

cgOneFactorGlobalTest-class  
  (globalTest.cgOneFactorFit), 69

100x672

100x647

100x623

100x598

100x574

100x550

100x537

100x513

100x491

100x465

100x440

100x416

100x392

100x367

100x343

100x320

100x296

100x272

100x248

100x224

100x200

100x176

100x152

100x128

100x104

100x80

100x56

100x712

100x672

100x647

100x623

100x598

100x574

100x550

100x537

100x513

100x491

100x465

100x440

100x416

100x392

100x367

100x343

100x320

100x296

100x272

100x248

100x224

100x200

100x176

100x152

100x128

100x104

100x80

100x56

100x712

100x672

100x647

100x623

100x598

100x574

100x550

100x537

100x513

100x491

100x465

100x440

100x416

100x392

100x367

100x343

100x320

100x296

100x272

100x248

100x224

100x200

100x176

100x152

100x128

100x104

100x80

100x56

100x712

100x672

100x647

100x623

100x598

100x574

100x550

100x537

100x513

100x491

100x465

100x440

100x416

100x392

100x367

100x343

100x320

100x296

100x272

100x248

100x224

100x200

100x176

100x152

100x128

100x104

100x80

100x56

100x712

100x672

100x647

100x623

100x598

100x574

100x550

100x537

100x513

100x491

100x465

100x440

100x416

100x392

100x367

100x343

100x320

100x296

100x272

100x248

100x224

100x200

100x176

100x152

100x128

100x104

100x80

100x56

cgOneFactorGrpSummaryTable, 105, 146, 147

cgOneFactorGrpSummaryTable  
  (grpSummaryTable.cgOneFactorFit), 77

cgOneFactorGrpSummaryTable-class  
  (grpSummaryTable.cgOneFactorFit), 77

cgOneFactorSampleSizeTable, 107, 130, 131, 148

cgOneFactorSampleSizeTable  
  (samplesizeTable.cgOneFactorFit), 136

cgOneFactorSampleSizeTable-class  
  (samplesizeTable.cgOneFactorFit), 136

cgPairedDifferenceComparisonsTable, 25, 27, 108, 117, 149

cgPairedDifferenceComparisonsTable  
  (comparisonsTable.cgPairedDifferenceFit), 33

cgPairedDifferenceComparisonsTable-class  
  (comparisonsTable.cgPairedDifferenceFit), 33

cgPairedDifferenceCorrelationTable, 110, 150

cgPairedDifferenceCorrelationTable  
  (correlationTable.cgPairedDifferenceData), 38

cgPairedDifferenceCorrelationTable-class  
  (correlationTable.cgPairedDifferenceData), 38

cgPairedDifferenceData, 38, 39, 44–46, 48, 66, 67, 87, 119, 120, 140

cgPairedDifferenceData  
  (prepareCGPairedDifferenceData), 93

cgPairedDifferenceData-class  
  (prepareCGPairedDifferenceData), 93

cgPairedDifferenceDescriptiveTable, 111, 112, 151

cgPairedDifferenceDescriptiveTable  
  (descriptiveTable.cgPairedDifferenceData), 44

cgPairedDifferenceDownweightedTable, 112, 113, 152, 153

cgPairedDifferenceDownweightedTable  
  (downweightedTable.cgPairedDifferenceFit), 53

cgPairedDifferenceDownweightedTable-class  
  (downweightedTable.cgPairedDifferenceFit), 53

cgPairedDifferenceFit, 34, 35, 53, 54, 66, 114, 115, 126, 139, 156, 158, 161, 167–169

cgPairedDifferenceFit  
  (fit.cgPairedDifferenceData), 66

cgPairedDifferenceFit-class  
  (fit.cgPairedDifferenceData), 66

cgPairedDifferenceSampleSizeTable, 116, 132, 133, 153, 154

cgPairedDifferenceSampleSizeTable  
  (samplesizeTable.cgPairedDifferenceFit), 139

cgPairedDifferenceSampleSizeTable-class  
  (samplesizeTable.cgPairedDifferenceFit), 139

cgPairedDifferenceVarianceTable, 117, 118, 154, 155

cgPairedDifferenceVarianceTable  
  (varianceTable.cgPairedDifferenceFit), 167

cgPairedDifferenceVarianceTable-class  
  (varianceTable.cgPairedDifferenceFit), 167

cgValidity, 14

cgPairedDifferenceData-class  
  (characterOrExpression-class), 12

cgPairedDifferenceData-class  
  (characterOrNULL-class), 12

cgPairedDifferenceData-class  
  (chop.matrix (cgInternalUtilities), 12

cgPairedDifferenceData-class  
  (chopZeros (cgInternalUtilities), 12

cgPairedDifferenceDescriptiveTable, 111, 112, 151

cgPairedDifferenceDescriptiveTable  
  (comparisonsGraph, 18, 21

cgPairedDifferenceDescriptiveTable  
  (comparisonsGraph, 20

(comparisonsGraph.cgOneFactorComparisonTable, comparisonsGraph.cgPairedDifferenceComparisonsTable, comparisonsGraph.cgPairedDifferenceExpressionTable, comparisonsGraph.cgPairedDifferenceComparisonTable, comparisonsGraph.cgPairedDifferenceExpressionTable)
<table>
<thead>
<tr>
<th>Function / Command</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>samplesizetable</td>
<td>139</td>
</tr>
<tr>
<td>samplesizetable.cgOneFactorfit</td>
<td>106, 135, 136, 147</td>
</tr>
<tr>
<td>samplesizetable.cgPairedDifferencefit</td>
<td>115, 139, 153</td>
</tr>
<tr>
<td>scalevar (cgInternalUtilities)</td>
<td>12</td>
</tr>
<tr>
<td>seeHelpFile (cgInternalUtilities)</td>
<td>12</td>
</tr>
<tr>
<td>setupAxisTicks (cgInternalUtilities)</td>
<td>12</td>
</tr>
<tr>
<td>setupGrpNameTicks (cgInternalUtilities)</td>
<td>12</td>
</tr>
<tr>
<td>setupLog10AxisTicks (cgInternalUtilities)</td>
<td>12</td>
</tr>
<tr>
<td>show.cgonefactorfit</td>
<td>102, 156</td>
</tr>
<tr>
<td>show.cgonefactorfit.method</td>
<td>114, 157</td>
</tr>
<tr>
<td>show.cgPairedDifferencefit</td>
<td>102, 156</td>
</tr>
<tr>
<td>show.cgPairedDifferencefit.method</td>
<td>114, 157</td>
</tr>
<tr>
<td>stnderr (cgInternalUtilities)</td>
<td>12</td>
</tr>
<tr>
<td>trimWhitespace (cgInternalUtilities)</td>
<td>12</td>
</tr>
<tr>
<td>unpaste (cgInternalUtilities)</td>
<td>12</td>
</tr>
</tbody>
</table>
unwind (cgInternalUtilities), 12
unwrap (cgInternalUtilities), 12
uvfit-class (cgInternalClasses), 12
validAddConstant (cgValidity), 14
validAft (cgValidity), 14
validAlpha (cgValidity), 14
validArgDigits (cgValidity), 14
validArgMatch (cgValidity), 14
validArgsModel (cgValidity), 14
validAtomicVec (cgValidity), 14
validBoolean (cgValidity), 14
validCensor (cgValidity), 14
validCGOneFacGroupColDfr (cgValidity), 14
validCGOneFacListedDfr (cgValidity), 14
validCharacter (cgValidity), 14
validComparisonType (cgValidity), 14
validCutoffWt (cgValidity), 14
validDataFormat (cgValidity), 14
validDenDf (cgValidity), 14
validDotsArg (cgValidity), 14
validDotsArgs (cgValidity), 14
validEqualLength (cgValidity), 14
validErrorDf (cgValidity), 14
validEstimates (cgValidity), 14
validFitType (cgValidity), 14
validGrpNames (cgValidity), 14
validList (cgValidity), 14
validN (cgValidity), 14
validNumeric (cgValidity), 14
validNumericOrCensored (cgValidity), 14
validPower (cgValidity), 14
validZeroScore (cgValidity), 14
varianceGraph, cgOneFactorFit-method
  (varianceGraph.cgOneFactorFit), 162
  varianceGraph.cgOneFactorFit, 163, 163
varianceTable, 166
varianceTable, cgPairedDifferenceFit-method
  (varianceTable.cgPairedDifferenceFit), 167
varianceTable.cgPairedDifferenceFit,
  117, 154, 167, 167
vgam, 165

xTicksCex (cgInternalUtilities), 12
yTicksCex (cgInternalUtilities), 12