Package ‘soilDB’

April 23, 2015

Type Package
Title Soil Database Interface
Version 1.5-4
Date 2015-04-21
Author D.E. Beaudette and J.M. Skovlin
Maintainer D.E. Beaudette <dylan.beaudette@ca.usda.gov>
Description A collection of functions for reading data from USDA-NCSS soil databases.
License GPL (>= 2)
LazyLoad yes
Depends R (>= 2.15.0), aqp
Imports plyr, Hmisc, RCurl, XML, sp
Suggests lattice, XMLSchema, SSOAP, dismo, raster, rgdal, jsonlite, RODBC
Repository CRAN
Additional_repositories http://www.omegahat.org/R
URL http://aqp.r-forge.r-project.org/
NeedsCompilation no
Date/Publication 2015-04-23 07:33:32

R topics documented:

soilDB-package .. 2
fetchKSSL .. 3
fetchNASIS ... 4
fetchNASISLabData .. 5
fetchOSD ... 6
fetchPedonPC .. 7
fetchRaCA .. 9
fetchSCAN .. 10
get_colors_from_NASIS_db 12
soilDB-package

get_colors_from_pedon_db .. 12
get_extended_data_from_NASIS_db 13
get_extended_data_from_pedon_db 14
get_hz_data_from_NASIS_db 14
get_hz_data_from_pedon_db 15
get_lablayer_data_from_NASIS_db 16
get_labpedon_data_from_NASIS_db 17
get_site_data_from_NASIS_db 17
get_site_data_from_pedon_db 19
get_veg_from_AK_Site ... 20
get_veg_from_MT_veg_db .. 21
get_veg_from_NPS_PLOTS_db 21
get_veg_other_from_MT_veg_db 22
get_veg_species_from_MT_veg_db 23
gSSURGO.chunk .. 23
loafercreek ... 24
mapunit_geom_by_ll_bbox .. 27
MUKEYS_by_ll_bbox ... 28
SDA_query .. 29
seriesExtent .. 31
SSURGO_spatial_query .. 33

Index 34

soilDB-package Soil Database Interface

Description

This package provides methods for extracting soils information from local PedonPC and AK Site
databases (MS Access format), local NASIS databases (MS SQL Server), and the SDA webservice.
Currently USDA-NCSS data sources are supported, however, there are plans to develop interfaces
to outside systems such as the Global Soil Mapping project.

Details

It can be difficult to locate all of the dependencies required for sending/processing SOAP requests,
especially on UNIX-like operating systems. Windows binary packages for the dependencies can be
found here. See fetchPedonPC for a simple wrapper function that should suffice for typical
site/pedon/hz queries. An introduction to the soilDB package can be found here.

Author(s)

J.M. Skovlin and D.E. Beaudette

See Also

fetchPedonPC, fetchNASIS, SDA_query, loafercreek
fetchKSSL

Fetch KSSL Data (EXPERIMENTAL)

Description
Get KSSL data via BBOX or series query, from the SoilWeb system.

Usage
fetchKSSL(series = NULL, bbox = NULL)

Arguments
- **series**: a soil series name
- **bbox**: a bounding box in WGS84 geographic coordinates e.g. c(-120, 37, -122, 38)

Details
This is an experimental interface to most of the KSSL data as of June 2013. Series-queries are case insensitive. Series name is based on the "correlated as" field (from KSSL snapshot) when present. The "sampled as" classification was promoted to "correlated as" if the "correlated as" classification was missing.

Value
a SoilProfileCollection object

Note
SoilWeb maintains a snapshot of the KSSL data. Please use the link below for the live data.

Author(s)
D.E. Beaudette

References
http://ncsslabdatamart.sc.egov.usda.gov/

See Also
fetchOSD
Examples

```r
## Not run:
# search by series name
s <- fetchKSSL(series='auburn')

# search by bounding-box
# s <- fetchKSSL(bbox=c(-120, 37, -122, 38))

# how many pedons
length(s)

# plot
par(mar=c(0,0,0,0))
plot(s, name='hzn_desgn', max.depth=150)
```

End(Not run)

fetchNasis
Fetch commonly used site/pedon/horizon data from a PedonPC database.

Description

Fetch commonly used site/pedon/horizon data from a PedonPC or local NASIS database, return as a SoilProfileCollection object.

Usage

```r
fetchNasis(rmHzErrors = TRUE, nullF FragsAreZero=TRUE)
fetchNasis_component_data()
getHzErrorsNasis(strict=TRUE)
```

Arguments

- `rmHzErrors` should pedons with horizonation errors be removed from the results? (default: TRUE)
- `nullF FragsAreZero` should fragment volumes of NULL be interpreted as 0? (default: TRUE), see details
- `strict` should horizonation by strictly enforced? (TRUE)

Details

The value of `nullF FragsAreZero` will have a significant impact on the rock fragment fractions returned by fetchNasis. Set `nullF FragsAreZero` = FALSE in those cases where there are many data-gaps and NULL rock fragment values should be interpreted as NULLs. Set `nullF FragsAreZero` = TRUE in those cases where NULL rock fragment values should be interpreted as 0.
This function attempts to do most of the boilerplate work when extracting site/pedon/horizon data from a local NASIS database. Pedons that are missing horizon data, or have errors in their horizontation are excluded from the returned object, however, their IDs are printed on the console. Pedons with combination horizons (e.g. B/C) are erroneously marked as errors due to the way in which they are stored in NASIS as two overlapping horizon records.

See `getHzErrorsNASIS` for a simple approach to identifying pedons with problematic horizontation.

Value

a SoilProfileCollection class object

Note

This function currently works only on Windows, and requires a 'nasis_local' ODBC connection.

Author(s)

D. E. Beaudette and J. M. Skovlin

Examples

```r
## Not run:
# query depends on some pedon data, queried against the national database
# note that you must setup this connection ahead of time
f <- fetchNASIS()

# plot only those profiles with dense contact
plot(f[which(f$denseContact), ], name='hzname')

# get basic component data from local NASIS, after performing a
# DMU-* query against the national database
fc <- fetchNASIS_component_data()

## End(Not run)
```

Description

Fetch KSSL laboratory pedon/horizon layer data from a local NASIS database, return as a SoilProfileCollection object.

Usage

```
fetchnasislabdata()
```
fetchOSD

Details

This function currently works only on Windows, and requires a ‘nasis_local’ ODBC connection.

Value

a SoilProfileCollection class object

Note

This function attempts to do most of the boilerplate work when extracting KSSL laboratory site/horizon data from a local NASIS database. Lab pedons that have errors in their horizonation are excluded from the returned object, however, their IDs are printed on the console. See `getHzErrorsNASIS` for a simple approach to identifying pedons with problematic horizonation.

Author(s)

J.M. Skovlin and D.E. Beaudette

See Also

`get_labpedon_data_from_NASIS_db`

Examples

```r
## Not run:
# query depends on some lab data, queried against the national database
# note that you must setup this connection ahead of time
# see inst/doc/setup_ODBC_local_NASIS.pdf
f <- fetchNASISLabData()

# plot only those profiles with densic contact
#plot(f[which(f$densic.contact), ], name='hzname')

## End(Not run)
```

fetchOSD

Fetch Official Series Description (OSD) Data

Description

This function fetches a limited subset of horizon and site-level attributes for named soil series, from the SoilWeb system.

Usage

`fetchOSD(soils)`
fetchPedonPC

Arguments

soils a character vector of named soil series

Details

the search is case-insensitive

Value

a SoilProfileCollection object

Note

SoilWeb maintains a snapshot of the Official Series Description data. Please use the link above for the live data.

Author(s)

D.E. Beaudette

References

http://www.nrcs.usda.gov/wps/portal/nrcs/site/soils/home/

Examples

```r
## Not run:
# soils of interest
s.list <- c('musick', 'cecil', 'drummer', 'amador', 'pentz',
'reiff', 'san joaquin', 'montpellier', 'grangeville', 'pollasky', 'ramona')

# fetch and convert data into an SPC
s <- fetchOSD(s.list)

# plot profiles
par(mar=c(0,0,0,0))
plot(s, name='hzname', cex.names=0.85, axis.line.offset=-4)

## End(Not run)
```

Description

Fetch commonly used site/horizon data from a PedonPC v.5 database.
fetchPedonPC

Usage

fetchPedonPC(dsn)
getHzErrorsPedonPC(dsn, strict=TRUE)

Arguments

dsn The path to a PedonPC version 5.x database
strict should horizonation by strictly enforced? (TRUE)

Details

This function currently works only on Windows.

Value

a SoilProfileCollection class object

Note

This function attempts to do most of the boilerplate work when extracting site/horizon data from a PedonPC or local NASIS database. Pedons that have errors in their horizonation are excluded from the returned object, however, their IDs are printed on the console. See getHzErrorsPedonPC for a simple approach to identifying pedons with problematic horizonation. Records from the 'taxhistory' table are selected based on 1) most recent record, or 2) record with the least amount of missing data.

Author(s)

D. E. Beaudette and J. M. Skovlin

See Also

get_hz_data_from_pendon_db

Examples

Not run:
path to local PedonPC back-end DB
dsn <- "S:/Service_Center/NRCS/pedon/pedon.accdb"

get routinely used soil data SoilProfileCollection object
f <- fetchPedonPC(dsn)

plot only those profiles with densic contact
plot(f[which(f$densic.contact),], name='hzname')

End(Not run)
fetchRaCA

Fetch KSSL Data (EXPERIMENTAL)

Description

Get Rapid Carbon Assessment (RaCA) data via state, geographic bounding-box, RaCA site ID, or series query from the SoilWeb system.

Usage

```r
fetchRaCA(series = NULL, bbox = NULL, state = NULL, rcasiteid = NULL, get.vnir = FALSE)
```

Arguments

- `series` a soil series name, case insensitive
- `bbox` a bounding box in WGS84 geographic coordinates e.g. `c(-120, 37, -122, 38)`, constrained to a 5-degree block
- `state` a two-letter US state abbreviation, case insensitive
- `rcasiteid` an RaCA site id (e.g. 'C1609C01')
- `get.vnir` boolean, should associated VNIR spectra be downloaded? (see details)

Details

The VNIR spectra associated with RaCA data are quite large [each gzip-compressed VNIR spectra record is about 6.6kb], so requests for these data are disabled by default. Note that VNIR spectra can only be queried by soil series or geographic BBOX.

Value

- `pedons`: a `SoilProfileCollection` object containing site/pedon/horizon data
- `trees`: a `data.frame` object containing tree DBH and height
- `veg`: a `data.frame` object containing plant species
- `stock`: a `data.frame` object containing carbon quantities (stocks) at standardized depths
- `sample`: a `data.frame` object containing sample-level bulk density and soil organic carbon values
- `spectra`: a numeric matrix containing VNIR reflectance spectra from 350–2500 nm

Author(s)

D.E. Beaudette, USDA-NRCS staff

References

[fetchRaCA() Tutorial](http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054164)
See Also

fetchOSD

Examples

```r
## Not run:
# search by series name
s <- fetchRaCA(series='auburn')

# search by bounding-box
# s <- fetchRaCA(bbox=c(-120, 37, -122, 38))

# check structure
str(s, 1)

# extract pedons
p <- s$pedons

# how many pedons
length(p)

# plot
par(mar=c(0,0,0,0))
plot(p, name='hzn_desgn', max.depth=150)

## End(Not run)
```

fetchSCAN

Fetch SCAN Data

Description

Query soil/climate data from USDA-NRCS SCAN Stations (experimental)

Usage

```r
fetchSCAN(req)
```

Arguments

- `req` a vector of named characters, e.g. `c(intervalType='View Historic', report='STO', timeseries='Daily', format='copy', sitenum='2072', interval='YEAR', year='2011', month='CY')`
Details
An attempt is made to parse the column names from the data returned from the SCAN webservice. The data returned will depend on the report submitted. Column names contain the code (I, D, H):
Daily sensors (e.g. TAVG.D-1) report a summary value for the previous day. Hourly sensors (e.g. TAVG.H-1) report a summary value for the previous hour. Instantaneous sensors (e.g. TOBS.I-1) report a single observation on the hour.
Some of the available reports include: SCAN, ALL, SOIL, SMS, STO, PREC, WEATHER, WIND, SOLAR.
See examples, details pending.

Value
a data.frame object

Note
This is still an experimental function.

Author(s)
D.E. Beaudette

References
http://www.wcc.nrcs.usda.gov/scan/

Examples
```r
## Not run:
# all sensors
req <- c(intervalType=' View Historic ', report='ALL', timeseries='Daily',
          format='copy', sitenum='2072', interval='YEAR', year='2011', month='CY')

# standard SCAN report
req <- c(intervalType=' View Historic ', report='SCAN', timeseries='Daily',
          format='copy', sitenum='2072', interval='YEAR', year='2011', month='CY')

# soil / air temps
req <- c(intervalType=' View Historic ', report='STO', timeseries='Daily',
          format='copy', sitenum='2072', interval='YEAR', year='2011', month='CY')

# soil moisture + precip
req <- c(intervalType=' View Historic ', report='SMS', timeseries='Daily',
          format='copy', sitenum='2072', interval='YEAR', year='2011', month='CY')

# soil moisture, hourly: careful, lots of data!
req <- c(intervalType=' View Historic ', report='SMS', timeseries='Hourly',
          format='copy', sitenum='2072', interval='YEAR', year='2011', month='CY')

# get data, format into DF
```
get_colors_from_pedon_db

x <- fetchSCAN(req)
End(Not run)

get_colors_from_NASIS_db

Extract Soil Color Data from a local NASIS Database

Description

Get, format, mix, and return color data from a NASIS database.

Usage

```r
get_colors_from_NASIS_db()
```

Details

This function currently works only on Windows.

Value

A dataframe with the results.

Author(s)

Jay M. Skovlin and Dylan E. Beaudette

See Also

`get_hz_data_from_NASIS_db`, `get_site_data_from_NASIS_db`

get_colors_from_pedon_db

Extract Soil Color Data from a PedonPC Database

Description

Get, format, mix, and return color data from a PedonPC database.

Usage

```r
get_colors_from_pedon_db(dsn)
```

Arguments

- **dsn**
 - The path to a 'pedon.mdb' database.
Details

This function currently works only on Windows.

Value

A dataframe with the results.

Author(s)

Dylan E. Beaudette and Jay M. Skovlin

See Also

`get_hz_data_from_pedon_db`, `get_site_data_from_pedon_db`
get_extended_data_from_pedon_db

Extract accessory tables and summaries from a local pedonPC Database

Description
Extract accessory tables and summaries from a local pedonPC Database.

Usage
get_extended_data_from_pedon_db(dsn)

Arguments
dsn The path to a 'pedon.mdb' database.

Details
This function currently works only on Windows.

Value
A list with the results.

Author(s)
Jay M. Skovlin and Dylan E. Beaudette

See Also
get_hz_data_from_pedon_db, get_site_data_from_pedon_db

get_hz_data_from_NASIS_db

Extract Horizon Data from a local NASIS Database

Description
Get horizon-level data from a local NASIS database.

Usage
get_hz_data_from_NASIS_db()
get_hz_data_from_pedon_db

Description

Extract Horizon Data from a PedonPC Database

Get horizon-level data from a PedonPC database.

Usage

```r
get_hz_data_from_pedon_db(dsn)
```

Arguments

- `dsn`: The path to a `pedon.mdb` database.

Details

This function currently works only on Windows.

Value

A dataframe.

Note

NULL total rock fragment values are assumed to represent an _absense_ of rock fragments, and set to 0.

Author(s)

Jay M. Skovlin and Dylan E. Beaudette

See Also

- `get_hz_data_from_NASIS_db`, `get_site_data_from_NASIS_db`
get_lablayer_data_from_NASIS_db

Extract lab pedon layer data from a local NASIS Database

Description

Get lab pedon layer-level (horizon-level) data from a local NASIS database.

Usage

get_lablayer_data_from_NASIS_db()

Details

This function currently works only on Windows, and requires a 'nasis_local' ODBC connection.

Value

A dataframe.

Note

This function queries KSSL laboratory site/horizon data from a local NASIS database from the lab layer data table.

Author(s)

Dylan E. Beaudette and Jay M. Skovlin

See Also

get_colors_from_pedon_db, get_site_data_from_pedon_db

get_labpedon_data_from_NASIS_db
get_labpedon_data_from_NASIS_db

Extract lab pedon data from a local NASIS Database

Description
Get lab pedon-level data from a local NASIS database.

Usage
get_labpedon_data_from_NASIS_db()

Details
This function currently works only on Windows, and requires a 'nasis_local' ODBC connection.

Value
A dataframe.

Note
This function queries KSSL laboratory site/horizon data from a local NASIS database from the lab pedon data table.

Author(s)
Jay M. Skovlin and Dylan E. Beaudette

See Also
get_lablayer_data_from_NASIS_db

get_site_data_from_NASIS_db

Extract Site Data from a local NASIS Database

Description
Get site-level data from a local NASIS database.

Usage
get_site_data_from_NASIS_db()
Details
When multiple "site bedrock" entries are present, only the shallowest is returned by this function.

Value
A dataframe.

Note
This function currently works only on Windows.

Author(s)
Jay M. Skovlin and Dylan E. Beaudette

See Also
get_hz_data_from_NASIS_db.

Examples

Not run:

Example: export / convert DMS coordinates from NASIS and save to DD import file

load required libraries
library(soilDB)
library(rgdal)
library(plyr)

get site data from NASIS
s <- get_site_data_from_NASIS_db()

keep only those pedons with real coordinates
good.idx <- which(!is.na(s$x))
s <- s[good.idx,]

investigate multiple datums:
table(s$datum, useNA='always')

this is not universally appropriate!
assume missing is NAD83
s$datum[is.na(s$datum)] <- 'NAD83'

check: OK
table(s$datum, useNA='always')

convert to NAD83
old.coords <- cbind(sx, sy)

add temp column for projection information, and fill with proj4 style info
get_site_data_from_pedon_db

Extract Site Data from a PedonPC Database

Description

Get site-level data from a PedonPC database.

Usage

get_site_data_from_pedon_db(dsn)

Arguments

dsn The path to a ’pedon.mdb’ database.

Value

A dataframe.
get_veg_from_AK_Site

Note
This function currently works only on Windows.

Author(s)
Dylan E. Beaudette and Jay M. Skovlin

See Also
get_hz_data_from_pedon_db, get_veg_from_AK_Site

get_veg_from_AK_Site Retrieve Vegetation Data from an AK Site Database

Description
Retrieve Vegetation Data from an AK Site Database

Usage
get_veg_from_AK_Site(dsn)

Arguments
dsn file path the the AK Site access database

Value
A dataframe with vegetation data in long format, linked to site ID.

Note
This function currently works only on Windows.

Author(s)
Dylan E. Beaudette

See Also
get_hz_data_from_pedon_db, get_site_data_from_pedon_db
get_veg_from_MT_veg_db

Extract Site and Plot-level Data from a Montana RangeDB database

Description

Get Site and Plot-level data from a Montana RangeDB database.

Usage

`get_veg_from_MT_veg_db(dsn)`

Arguments

- `dsn` The name of the Montana RangeDB front-end database connection (see details).

Details

This function currently works only on Windows.

Value

A dataframe.

Author(s)

Jay M. Skovlin

See Also

`get_veg_species_from_MT_veg_db, get_veg_other_from_MT_veg_db`

get_veg_from_NPS_PLOTS_db

Retrieve Vegetation Data from an NPS PLOTS Database

Description

Used to extract species, stratum, and cover vegetation data from a backend NPS PLOTS Database. Currently works for any Microsoft Access database with an .mdb file format.

Usage

`get_veg_from_NPS_PLOTS_db(dsn)`
get_veg_other_from_MT_veg_db

Arguments

dsn
file path to the NPS PLOTS access database on your system.

Value

A dataframe with vegetation data in a long format with linkage to NRCS soil pedon data via the site_id key field.

Note

This function currently only works on Windows.

Author(s)

Jay M. Skovlin

get_veg_other_from_MT_veg_db

Extract cover composition data from a Montana RangeDB database

Description

Get cover composition data from a Montana RangeDB database.

Usage

get_veg_other_from_MT_veg_db(dsn)

Arguments

dsn
The name of the Montana RangeDB front-end database connection (see details).

Details

This function currently works only on Windows.

Value

A dataframe.

Author(s)

Jay M. Skovlin

See Also

get_veg_from_MT_veg_db, get_veg_species_from_MT_veg_db
get_veg_species_from_MT_veg_db

Extract species-level Data from a Montana RangeDB database

Description
Get species-level data from a Montana RangeDB database.

Usage
get_veg_species_from_MT_veg_db(dsn)

Arguments
dsn
The name of the Montana RangeDB front-end database connection (see details).

Details
This function currently works only on Windows.

Value
A dataframe.

Author(s)
Jay M. Skovlin

See Also
get_veg_from_MT_veg_db, get_veg_other_from_MT_veg_db

gSSURGO.chunk

Gridded SSURGO Chunk

Description
A chunk of the gridded SSURGO database (gSSURGO)

Usage
data(gSSURGO.chunk)
Details
This is a 106x137 grid, cropped from the gSSURGO database. Cell values are map unit keys (mukey), stored as integers. No raster attribute table (RAT) is included with this sample data set. Note that this sample of the gSSURGO data has been modified such that cell values are map unit keys, rather than the gSSURGO integer key.

Source
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/?cid=nrcs142p2_053628

Examples
data(gSSURGO.chunk)

Description
A SoilProfileCollection Object of Loafercreek Soils from the CA630 Soil Survey Area.

Usage
data(loafercreek)

Format
Formal class 'SoilProfileCollection' [package "aqp"] with 7 slots
 ..@ idcol : chr "pedon_id"
 ..@ depthcols : chr [1:2] "hzdept" "hzdepb"
 ..@ metadata : 'data.frame': 1 obs. of 1 variable:
 $ depth_units: chr "cm"
 ..@ horizons : 'data.frame': 308 obs. of 29 variables:
 $ phid : int [1:308] 1258320 1258321 1258322 1258323 1258324 1258325 2068689 2068690 2068691 ...
 $ pedon_id : chr [1:308] "07SKC003" "07SKC003" "07SKC003" "07SKC003" "07SKC003" ...
 $ hzname : chr [1:308] "A" "Bt1" "Bt2" "2Bt3" ...
 $ hzdept : int [1:308] 0 10 23 33 48 64 0 1 4 12 ...
 $ hzdepb : int [1:308] 10 23 33 48 64 1 4 12 28 ...
 $ clay : num [1:308] 15 19 32 38 28 NA NA NA 16 18 25 ...
 $ silt : num [1:308] 50 61 55 49 NA NA NA NA NA ...
 $ sand : num [1:308] 35 20 13 13 NA NA NA NA NA ...
 $ texture_class : chr [1:308] "1" "sil" "sicl" "sicl" ...
 $ phfield : num [1:308] 6.8 6.7 6.9 6.9 6.7 ...
 $ effervescence : chr [1:308] NA NA NA NA ...
 $ labsampnum : chr [1:308] NA NA NA NA ...
 $ total_frags_pct: int [1:308] 10 24 5 10 23 0 0 10 10 18 ...
loafercreek

0 site 'data.frame': 52 obs. of 46 variables:

$. pedon_id : chr [1:52] "07SKC003" "09BAH008" "09CKS001" "09CKS006" ...
$. peiid : int [1:52] 268820 493742 342445 374201 374205 374216 374219 ...
$. site_id : chr [1:52] "07CA630SKC003" "09CA630BAH008" "09CA630CKS001" ...
$. siteiid : int [1:52] 269617 501286 342696 374485 374489 374500 374503 ...
$. sampled_as : chr [1:52] "Motherlode" "Loafercreek" "Loafercreek active" ...
$. correlated_as : chr [1:52] "LOAFCREEK" "Loafercreek" "Loafercreek" "Loafercreek" ...
$. hillslope_pos : chr [1:52] "Backslope" "Footslope" "Backslope" "Backslope" ...
$. datum : chr [1:52] "NAD83" "NAD83" "NAD83" "NAD83" ...
$. elev : num [1:52] 328 384 1014 210 202 ...
$. slope : num [1:52] 9 3 22 29 4 36 50 18 22 32 ...
$. aspect : int [1:52] 344 102 220 235 115 185 185 335 45 52 ...
$. plantassocnm : chr [1:52] "Blue Oak Woodland" "Blue Oak Woodland/Grassland" ...
$. bedrockdepth : int [1:52] 64 68 110 86 96 72 93 65 72 70 ...
$. bedrock_kind : chr [1:52] "Greenstone" "Metavolcanics" "Greenstone" "Greenstone" ...
$. bedrock_hardness : chr [1:52] "Noncemented" "NA" ...
$. describer : chr [1:52] "Stacy Kavanaugh" "Bev Harben" "Chris Savastio" ...
$. psctopdepth : int [1:52] 23 12 9 3 2 12 8 5 6 25 ...
$. psbotdepth : int [1:52] 64 62 59 53 52 57 59 55 56 70 ...
$. part_size_class : chr [1:52] "fine-loamy" "fine-loamy" "fine-loamy" "fine-loamy" ...
$. tax_subgroup : chr [1:52] "Ultic Haploxeralfs" "Ultic Haploxeralfs" "Ultic Haploxeralfs" ...
$. obs_date : POSIXct[1:52], format: "2007-03-21" "2009-06-03" "2009-03-21" ...
$. pedon_purpose : chr [1:52] "full pedon description" "full pedon description" ...
$. pedon_type : chr [1:52] "within range of series" "within range of series" ...
$. pedlabsampnum : chr [1:52] "NA" "S09CA009002" "NA" ...
$. ochric.epipedon : logi [1:52] TRUE TRUE TRUE TRUE TRUE TRUE ...
$. cambic.horizon : logi [1:52] FALSE FALSE FALSE FALSE FALSE FALSE ...
$. paralithic.contact : logi [1:52] TRUE TRUE TRUE TRUE TRUE TRUE ...
$. lithic.contact : logi [1:52] FALSE FALSE FALSE FALSE FALSE FALSE ...
$. mollic.epipedon : logi [1:52] FALSE FALSE FALSE FALSE FALSE FALSE ...
$. argillic.horizon : logi [1:52] TRUE TRUE TRUE TRUE TRUE ...
$. umbric.epipedon : logi [1:52] FALSE FALSE FALSE FALSE FALSE FALSE ...
Examples

Not run:
load example dataset
data(gopheridge)

what kind of object is this?
class(gopheridge)

tighten figure margins:
par(mar=c(0,0,4,0))

plot soil colors
plot(gopheridge, name='hzname', color='soil_color')
mapunit_geom_by_ll_bbox

Fetch Map Unit Geometry from SDA

Description

Fetch map unit geometry from the SDA website by WGS84 bounding box.

Usage

mapunit_geom_by_ll_bbox(bbox, source = 'sda')

Arguments

bbox a bounding box in WGS coordinates
source the source database, currently limited to soil data access (SDA)

Details

The SDA website can be found at http://sdmdataaccess.nrcs.usda.gov. See examples for bounding box formatting.

Value

A SpatialPolygonsDataFrame of map unit polygons, in WGS84 (long,lat) coordinates.

Note

It appears that SDA does not actually return the spatial intersection of map unit polygons and bounding box. Rather, just those polygons that are completely within the bounding box / overlap with the bbox. This function requires the ‘rgdal’ (http://cran.r-project.org/web/packages/rgdal/index.html) package.
Author(s)

Dylan E Beaudette

References

http://casoilresource.lawr.ucdavis.edu/

Examples

```r
# fetch map unit geometry from a bounding-box:
#
# +---------- (-120.41, 38.70)
# |
# |
# (-120.54, 38.61) +----------

# Not run:
# basic usage
b <- c(-120.54, 38.61, -120.41, 38.70)
x <- mapunit_geom_by_ll_bbox(b) # about 20 seconds

# note that the returned geometry is everything overlapping the bbox
# and not an intersection... why?
plot(x)
rect(b[1], b[2], b[3], b[4], border='red', lwd=2)

# get map unit data for matching map unit keys
in.statement <- format_SQL_in_statement(unique(x$mukey))
q <- paste("SELECT mukey, muname FROM mapunit WHERE mukey IN ", in.statement, sep=""
res <- SDA_query(q)

# End(Not run)
```

MUKEYS_by_ll_bbox

Fetch Map Unit Keys by Bounding Box

Description

This function will return a vector of map unit keys, from the Soil Data Access website, that correspond with a bounding box defined by WGS84 long/lat pairs.

Usage

`MUKEYS_by_ll_bbox(bbox)`

Arguments

- `bbox` a bounding box in WGS84 geographic coordinates
SDA_query

Details
The SDA website can be found at http://sdmdataaccess.nrcs.usda.gov. See examples for bounding box formatting. This website can be very slow. An updated approach can be found in `SSURGO_spatial_query`.

Value
a vector of map unit keys

Note
This function requires the ‘RCurl’ and ‘XML’ packages.

Author(s)
Dylan E Beaudette

References

See Also
`SDA_query`, `mapunit_geom_by_ll_bbox`

Examples
```r
# fetch map unit keys from the bounding-box:
#
# +----------------- (-120.8, 37.8)
# | |
# | |
# (-120.95, 37.7) +-----------------+

b <- c(-120.9, 37.7, -120.8, 37.8)
## Not run: m <- MUKEYS_by_ll_bbox(b)
```

SDA_query Soil Data Access Query

Description
Submit a query to the Soil Data Access (SDA) website in SQL, get the results as a dataframe.

Usage
`SDA_query(q)`
Arguments

q a text string containing valid SQL

Details

The SDA website can be found at http://sdmdatalaccess.nrcs.usda.gov and query examples can be found at http://sdmdatalaccess.nrcs.usda.gov/QueryHelp.aspx

Value

A dataframe containing the results.

Note

Author(s)

Dylan E. Beaudette

References

http://casoilresource.lawr.ucdavis.edu/

See Also

MUKEYS_by_ll_bbox, mapunit_geom_by_ll_bbox

Examples

install the required packages
Not run:
install.packages('RCurl', dep=TRUE)
install.packages('XML', dep=TRUE)
install.packages('SSOAP', repos = "http://www.omegahat.org/R", type="source")
install.packages('XMLSchema', repos = "http://www.omegahat.org/R", type="source")

End(Not run)

SSURGO export metadata:
Not run:
q <- "SELECT areasymbol, saverest FROM sacatalog WHERE areasymbol LIKE 'CA';"

x <- SDA_query(q)
x$saverest <- as.Date(x$saverest, format="%m/%d/%Y")

head(x)

End(Not run)
basic query:
Not run:
res <- SDA_query("select cokey, compname, comppct_r
from component
where compname = 'yolo' and majcompflag = 'Yes'")

End(Not run)

get tabular data based on result from spatial query:
Not run:

bbox
b <- c(-120.9,37.7,-120.8,37.8)
get map unit keys for this bbox
m <- MUKEYS_by_ll_bbox(b)
make an SQL-compliant "in" statement
in_statement <- format_SQL_in_statement(m)
format query:
q <- paste("SELECT component.cokey, compname, comppct_r, hzdept_r, hzdepb_r,
hzname, sandtotal_r, silttotal_r, claytotal_r
FROM component JOIN chorizon ON component.cokey = chorizon.cokey
WHERE majcompflag = 'Yes' AND mukey IN ", in_statement,
"ORDER BY cokey, comppct_r DESC, hzdept_r ASC", sep="")
now get component and horizon-level data for these map unit keys
res <- SDA_query(q)

End(Not run)

get component-level data for a specific soil survey area (Yolo county, CA)
Not run:
q <- "SELECT component.mukey, cokey, comppct_r, compname, taxclname,
taxorder, taxsuborder, taxgrtgroup, taxsubgrp
FROM legend
INNER JOIN mapunit ON mapunit.lkey = legend.lkey
LEFT OUTER JOIN component ON component.mukey = mapunit.mukey
WHERE legend.areasymbol = 'CA113'"
res <- SDA_query(q)

End(Not run)

seriesExtent

Get/Display Soil Series Extent

Description

Get or display the spatial extent of a named soil series using the Series Extent Explorer.
seriesExtent

Usage

seriesExtent(s, timeout=60)
seriesExtentAsGmap(s, timeout=60, exp=1.25)

Arguments

s the soil series name

timeout time that we are willing to wait for a response, in seconds

exp expansion factor used to expand Google Maps region

Details

Soil series extent data are downloaded from a static cache of GeoJSON files on SoilWeb servers. Cached data are typically updated annually.

Value

when calling seriesExtent, a SpatialPolygonsDataFrame object

Note

These function require the 'rgdal' and 'dismo' packages.

Author(s)

D.E. Beaudette

References

http://casoilresource.lawr.ucdavis.edu/see

Examples

Not run:
fetch series extent for the 'Amador' soil series
s <- seriesExtent('amador')
plot(s)

fetch then plot the extent of the 'Amador' soil series
seriesExtentAsGmap('amador')

End(Not run)
SSURGO_spatial_query
Get SSURGO Data via Spatial Query

Description

Get SSURGO Data via Spatial Query

Usage

```r
SSURGO_spatial_query(bbox = NULL, coords = NULL, what = "mapunit", source = "soilweb")
```

Arguments

- `bbox`: a bounding box in WGS84 geographic coordinates, see examples
- `coords`: a coordinate pair in WGS84 geographic coordinates, see examples
- `what`: data to query, currently ignored
- `source`: the data source, currently ignored

Details

Data are currently available from SoilWeb. These data are a snapshot of the "official" data. The snapshot date is encoded in the "soilweb_last_update" column in the function return value. Planned updates to this function will include a switch to determine the data source: "official" data via USDA-NRCS servers, or a "snapshot" via SoilWeb.

Value

The data returned from this function will depend on the query style. See examples below.

Note

This function should be considered experimental; arguments, results, and side-effects could change at any time.

Author(s)

D.E. Beaudette

Examples

```r
# query by bbox
## Not run: SSURGO_spatial_query(bbox = c(-122.05, 37, -122, 37.05))

# query by coordinate pair
## Not run: SSURGO_spatial_query(coords = c(-121, 38))
```
Index

*Topic datasets
 gSSURGO.chunk, 23
 loafercreek, 24
*Topic manip
 fetchNADIUS, 4
 fetchNADIUSLabData, 5
 fetchOSD, 6
 fetchPedonPC, 7
 fetchSCAN, 10
 get_colors_from_NADIUS_db, 12
 get_colors_from_pedon_db, 12
 get_extended_data_from_NADIUS_db, 13
 get_extended_data_from_pedon_db, 14
 get_hz_data_from_NADIUS_db, 14
 get_hz_data_from_pedon_db, 15
 get_lablayer_data_from_NADIUS_db, 16
 get_labpedon_data_from_NADIUS_db, 17
 get_site_data_from_NADIUS_db, 17
 get_site_data_from_pedon_db, 19
 get_veg_from_AK_Site, 20
 get_veg_from_MT_veg_db, 21
 get_veg_from_NP5_PLOTS_db, 21
 get_veg_other_from_MT_veg_db, 22
 get_veg_species_from_MT_veg_db, 23
 mapunit.geom_by.ll_bbox, 27
 MUKEYS_by_ll_bbox, 28
 SDA_query, 29
 seriesExtent, 31
 SSURGO.spatial_query, 33
*Topic package
 soilDB-package, 2
*Topic utilities
 fetchKSSL, 3
 fetchRaCA, 9
 andic.subset(loafercreek), 24
 cisne(loafercreek), 24
 cleanSDA(SDA_query), 29
 fetchHenry(fetchSCAN), 10
 fetchKSSL, 3
 fetchNADIUS, 2, 4
 fetchNADIUS_component_data(fetchNADIUS), 4
 fetchNADIUSLabData, 5
 fetchOSD, 3, 6, 10
 fetchPedonPC, 2, 7
 fetchRaCA, 9
 fetchSCAN, 10
 format_SQL_in_statement(SDA_query), 29
 get_colors_from_NADIUS_db, 12
 get_colors_from_pedon_db, 12, 16
 get_component_data_from_NADIUS_db(fetchNADIUS), 4
 get_component_horizon_data_from_NADIUS_db(fetchNADIUS), 4
 get_copedon_from_NADIUS_db(fetchNADIUS), 4
 get_extended_data_from_NADIUS_db, 13
 get_extended_data_from_pedon_db, 14
 get_hz_data_from_NADIUS_db, 12, 13, 14, 15, 18
 get_hz_data_from_pedon_db, 8, 13, 14, 15, 20
 get_lablayer_data_from_NADIUS_db, 16, 17
 get_labpedon_data_from_NADIUS_db, 6, 16, 17
 get_site_data_from_NADIUS_db, 12, 13, 15, 17
 get_site_data_from_pedon_db, 13, 14, 16, 19, 20
 get_text_notes_from_NADIUS_db(fetchNADIUS), 4
 get_veg_from_AK_Site, 20, 20
 get_veg_from_MT_veg_db, 21, 22, 23
INDEX

get_veg_from_NPS_PLOTS_db, 21
get_veg_other_from_MT_veg_db, 21, 22, 23
get_veg_species_from_MT_veg_db, 21, 22, 23
getHzErrorsNASIS, 5, 6
getHzErrorsNASIS(fetchNASIS), 4
getHzErrorsPedonPC, 8
getHzErrorsPedonPC(fetchPedonPC), 7
gopheridge(loafercreek), 24
gSSURGO.chunk, 23
loafercreek, 2, 24
mapunit_geom_by_ll_bbox, 27, 29, 30
mix_and_clean_colors
 (get_colors_from_pedon_db), 12
MUKEYS_by_ll_bbox, 28, 30
SDA_query, 2, 29, 29
seriesExtent, 31
seriesExtentAsGmap(seriesExtent), 31
soilDB (soilDB-package), 2
soilDB-package, 2
soilDB.env (soilDB-package), 2
SSURGO.spatial_query, 29, 33