Package ‘tigerstats’

February 20, 2015

Type Package

Title R for Elementary Statistics

Version 0.2

Date 2014-11-23

Author Rebekah Robinson <rrobinson2@humana.com> and Homer White <hwhite@georgetowncollege.edu>

Maintainer Homer White <hwhite@georgetowncollege.edu>

Description This package consists of data sets and functions that are useful in the teaching of statistics at an elementary level to students who may have little or no previous experience with the command line. The functions for elementary inferential procedures follow a uniform interface for user input. Some of the functions are instructional applets that can only be run on the R Studio integrated development environment with package manipulate attached. R Studio is freely available (www.rstudio.org), and includes package manipulate. Other instructional applets are Shiny apps that may be run locally. In teaching the package is used alongside of package mosaic, which is therefore listed as a dependency.

License GPL (>= 3)

Depends R(>= 2.10), mosaic, mosaicData, abd

Imports MASS, ggplot2, lattice

Suggests shiny, knitr

LazyLoad yes

LazyData true

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2014-12-03 07:58:15
R topics documented:

tigerstats-package ... 4
alcohol .. 4
attitudes .. 5
barchartGC ... 6
beans ... 8
BinomNorm ... 8
BinomSkew .. 9
binomtestGC ... 9
cabrera ... 11
ChisqSimSlow ... 11
chisqtestGC ... 12
chugtime .. 14
CIMean .. 14
CIProp .. 15
colPerc .. 16
deathpen .. 16
DtrellHist .. 17
DtrellScat .. 17
EmpRule .. 18
EmpRuleGC ... 19
expCounts .. 20
FakeSchool ... 20
FindRegLine ... 21
fuel ... 21
galton ... 22
gcfeling .. 22
gcstudents .. 23
gss02 ... 23
gss08 ... 24
gss2012 ... 25
hair_and_act ... 25
handheight ... 26
hanford1 .. 26
hanford2 .. 27
helpGC .. 27
henderson .. 28
hofbatting .. 29
hofpitching ... 30
imagpop ... 31
iqsiblings .. 32
knifeorgunblock .. 32
labels ... 33
ledgejump .. 33
lmGC ... 34
m111survey ... 35
m111surveyfa12 .. 35
R topics documented:

- m111surveyfa13 .. 36
- MeanSampler .. 37
- music ... 38
- napkins ... 39
- nonresponse .. 39
- nosmokeday .. 40
- oldfaithful .. 40
- ostrichtemp ... 41
- Ovarian ... 41
- pbinomGC ... 42
- pchisqGC .. 43
- pennstate1 .. 44
- plot.GClm ... 44
- plot.polyGC ... 45
- pnormGC ... 46
- Points2Watch ... 47
- polyfitGC ... 47
- popsamp ... 48
- predict.GClm .. 49
- predict.polyGC ... 50
- PropSampler .. 50
- prop.testGC .. 51
- ptGC ... 53
- pushups ... 54
- qnormGC .. 54
- RandomExp .. 55
- RegEstimate ... 56
- rowPerc ... 57
- saltmarsh ... 57
- SampDist2Means ... 58
- SampDist2Props ... 59
- SampDistMean .. 60
- sat ... 61
- sealsO2 ... 61
- ShallowReg .. 62
- SimpleRandom ... 63
- SimpleRandom2 ... 63
- Skewer ... 64
- SlowGoodness .. 65
- SmallExp ... 65
- stumps ... 66
- temperature ... 66
- tExplore ... 67
- theme.rpres .. 67
- themer-pres .. 68
- tips ... 68
- tornado ... 69
- tSampler ... 69
alcohol

tigerstats-package R for Elementary Statistics

Description

tigerstats

Details

Datasets and functions useful for teaching elementary statistics.

Author(s)

Rebekah Robinson (<rrobinson20@humana.com>), Homer White (<hwhite0@georgetowncollege.edu>)

References

http://statistics.georgetowncollege.edu

alcohol Alcohol at Georgetown College

Description

Alcohol policy violations on the Georgetown College campus over several years.

Format

A data frame with 10 observations on the following 4 variables.

year Academic year ending with Spring of the given year.

enrollment Full-time equivalent enrollment.

writeups Number of write-ups for alcohol violations.

writeups.per.100 Number of writeups per 100 students.

Source

Collected by MAT 111 students as a project.
Description

Study conducted in November 2001 by students in MAT 111. Subjects were 267 Georgetown College students. Not all subjects got the same survey form.

Format

A data frame with 268 observations on the following 8 variables.

- **def.race**: Suggested race of the defendant in the survey form.
- **vic.race**: Suggested race of the victim in the survey form.
- **conc.situation**: Scenario described in the in the "rock concert" question on the survey form.
- **sentence**: Sentence, in years, recommended for the defendant.
- **conc.decision**: Whether or not the subject chose to buy a ticket (or buy another ticket).
- **year**: Class rank of the subject.
- **sex**: a factor with level Sex of the survey participant.
- **major**: possible values: humanities math.sci pre.prof social.sci Type of major the subject intends.

Details

Here is a sample survey form, with variants noted.

Attitudes Survey

Crime: You are on a jury for a manslaughter case in Lewistown, PA. The defendant has been found guilty, and in Pennsylvania it is part of the job of the jury to recommend a sentence to the judge. The facts of the case are as follows. The defendant, Tyrone Marcus Watson, a 35-year old native of Lewistown, was driving under the influence of alcohol on the evening of Tuesday July 17, 2001. At approximately 11:00 PM Watson drove through a red light, striking a pedestrian, Betsy Brockenheimer, a 20-year old resident of Lewistown. Brockenheimer was taken unconscious to the hospital and died of her injuries about one hour later. Watson did not flee the scene, nor did he resist arrest.

The prior police record for Mr. Watson is as follows: two minor traffic violations, and one previous arrest, five years ago, for DUI. No one was hurt in that incident.

Watson has now been convicted of DUI and manslaughter. The minimum jail term for this combination of offenses is two years; the maximum term is fifty years. In the blank below, write a number from 2 to 50 as your recommended length of sentence for Tyrone Marcus Watson.

[In the question above, name of defendant could vary: either William Shane Winchester or Tyrone Marcus Watson. The name of the victim could also vary: either Betsy Brockenheimer or Latisha Dawes.]
Spending Habits
You have purchased a $30 ticket to see a rock concert in Rupp Arena. When you arrive at the Arena on the night of the performance, you find that you have lost the ticket. You have no receipt, so it will not be possible to see the concert unless you purchase another ticket. Would you purchase another ticket? Circle below.
YES NO
[In other forms, the question above could have been: You plan to see a rock concert in Rupp Arena. Tickets for the performance are $30. When you arrive at the Arena on the night of the performance, you find that you have lost two bills from your purse or wallet: a ten and a twenty. Would you buy the ticket anyway?]

Respondent Data
I am (circle one): freshman sophomore junior senior
I am (circle one) male female
(Optional) My intended major is: _____________________

Source
Georgetown College

barchartGC

Easy Barcharts

Description
Wrapper for barchart in package lattice. Creates a barchart from raw data using formula-data syntax similar to that of xtabs, or from a table. Defaults to a "standard" barchart in which the bars are vertical and unstacked. Supports percentage barcharts.

Usage
barchartGC(x, data=parent.frame(), type="frequency", flat=FALSE, auto.key=TRUE, horizontal=FALSE, stack=FALSE, ...)

Arguments
x Either a formula or an object that can be coerced to a table. If formula, it must be of the form ~var or ~var1+var2.
data Usually a data frame that supplies the variables in x. Variables not in the data argument are searched for in the parent environment.
type Possible values are "frequency" and "percent".
flat If set to TRUE, will produce barchart that resembles the layout of xtabs
auto.key Provides a simple key
horizontal Determines orientation of the bars (overrriden by flat)
Determines whether bars for tallies are stacked on each other or placed next to one another (overridden by flat).

... other arguments passed to `barchart`: these include `main`, `sub`, and `xlab`, which are likely to be familiar to students from other lattice graphical functions. An error is possible if other arguments pertaining to legends are passed (hopefully anyone interested in such will have moved on to `barchart`).

Value

A trellis object describing the barchart.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
# barchart of counts for one factor variable:
barchartGC(~sex,data=ml11survey)

# barchart with percentages and title:
barchartGC(~sex,data=ml11survey,
     type="percent",
     main="Distribution of Sex")

# barchart of counts, to study the relationship between two factor variables:
barchartGC(~sex+seat,data=ml11survey)

# percentage barchart, two factor variables:
barchartGC(~sex+seat,data=ml11survey,type="percent")

# From tabulated data:
sexseat <- xtabs(~sex+seat,data=ml11survey)
barchartGC(sexseat,type="percent",main="Sex and Seating Preference")

# from tabulated data:
dieTosses <- c(one=8,two=18,three=11,four=7,five=9,six=7)
barchartGC(dieTosses,main="60 Rolls of a Die")

# a "flat" barchart, pictorial version of `xtabs()`
barchartGC(~sex+seat,data=ml11survey,flat=TRUE,ylab="Sex")

# a "flat" barchart, pictorial version of `xtabs()`
barchartGC(~sex+seat,data=ml11survey,type="percent",flat=TRUE,ylab="Sex")
```
Experiment performed at UC-Davis; fifteen students participated. Each student was asked to place as many beans into a cup as he/she could, in 15 seconds. Each student performed this task once with the dominant hand, and once with the nondominat hand, but the order of performance was randomized. The purpose of the study was to see whether manual dexterity was better for the dominant hand. Terminology: your dominant hand is the hand you use the most.

A data frame with 15 observations on the following 3 variables.

- **Dom**: Number of beans placed into cup with the dominant hand.
- **NonDom**: Number of beans placed with the nondominant hand.
- **Diff**: Difference in number of beans placed (dominant hand minus nondominant hand).

Binomial Distributions With Normal Approximation

An app to investigate the binomial family.

BinomNorm()}

no value. Graphical side-effects only.

Homer White (hwhite0@georgetowncollege.edu)

Not run:
if (require(manipulate)) BinomNorm()

End(Not run)
BinomSkew

Skewness in the Binomial Family of Distributions

Description

An app to investigate how skewness in a binomial distribution vanishes when np is large enough. Sample size is set at n = 50, but the user can vary p with a slider.

Usage

BinomSkew()

Value

no value. Graphical side-effects only.

Author(s)

Homer White (hwhite0@georgetowncollege.edu)

Examples

```r
## Not run:
if (require(manipulate)) BinomSkew()

## End(Not run)
```

binomtestGC

Exact Procedures for a Single Proportion

Description

Wrapper for `binom.test` in package `stats`. Employs the binomial distribution in inferential procedures for a single proportion.

Usage

```r
binomtestGC(x, data=parent.frame(), n=numeric(), p=NULL,
            alternative=c("two.sided","less","greater"),
            success="yes", conf.level=0.95, graph=FALSE, verbose=TRUE)
```
Arguments

x
Either a formula or a numeric vector. If formula, it must be of the form ~x indicating the single variable under study. When summary data are provided, x is a numeric vector of success counts.

data
Data frame that supplies the variable x. If not found in data, the variable is searched for in the parent environment.
n
When not empty, this is a numeric vector giving the size of the sample.
p
Specifies Null Hypothesis value for population proportion. If not set, no test is performed.
alternative
"two.sided" requests computation of a two-sided P-value; other possible values are "less" and "greater".
success
When x is a formula, this argument indicates which value of variable x is being counted as a success. When working with formula-data input the value of this parameter MUST be set, even when the variable has only two values.
conf.level
Number between 0 and 1 indicating the confidence-level of the interval supplied.
graph
If TRUE, plot graph of P-value. Ignored if no test is performed.
verbose
Determines whether to return lots of information or only the basics

Value

an object of class GCbinomtest.

Author(s)

Homer White <hwhite0@georgetowncollege.edu>

Examples

#Confidence interval only:
binomtestGC(~sex,data=m111survey,success="female")

#Confidence interval and two-sided test, Null Hypothesis p = 0.5:
binomtestGC(~sex,data=m111survey,success="female",p=0.5)

#For confidence level other than 95%, use conf.level argument.
#For 90% interval:
binomtestGC(~sex,data=m111survey,success="female",conf.level=0.90)

#For one-sided test, set alternative argument as desired:
binomtestGC(~sex,data=m111survey,p=0.50,
 success="female",alternative="greater")

#Summary data:
#In one sample, 40 successes in 100 trials. Testing whether p = 0.45.
binomtestGC(x=40,n=100,p=0.45)
Description

PITCHf/x data on nine-time All-Star Miguel Cabrera, who is thought to be one of the best pure hitters in baseball. Covers seasons 2009 through 2012.

Format

A data frame with 6265 observations on the following 12 variables. Each observation is a pitch to Cabrera.

- **season**: The year of play
- **gamedate**: Date of the game in which the pitch was thrown
- **pitch_type**: Type of pitch thrown, as determined by a computer algorithm.
- **balls**: Current ball count
- **strikes**: Current strike count
- **speed**: Speed of pitch (in mph). (When crossing plate?)
- **px**: X-coordinate of pitch (in feet, measured from center of plate)
- **pz**: Vertical coordinate of pitch (in feet above plate)
- **swung**: Whether or not Cabrera swung at the ball. Factor with levels "no", "yes".
- **hitx**: X-coordinate of landing point of ball (if it was hit). Relative to park.
- **hity**: Y-coordinate of landing point of ball (if it was hit). Relative to park.
- **hit_outcome**: Outcome when ball was hit. Factor with levels E (error), H (hit), O (batter out).

Source

Description

An app to illustrate use of the chi-square statistic to test for a relationship between two categorical variables. The P-value is computed by resampling, and the resamples are done one at a time. A histogram of resampled chi-square statistics is displayed after each resample, and summary information is output to the console.
Usage

ChisqSimSlow(form, data, effects=c("random","fixed"))

Arguments

form a formula of the form ~x+y. When using fixed effects (see below for explanation), x should be the variable that is considered the predictor variable.
data A data frame from which x and y are drawn.
effects When effects="fixed", the resampling is performed under the condition that the row sums in the resampled two-way table (with x for rows) are the same as the row sums in the two-way table based on the original data. When effects="random", then both row and column sums in the resampled table may vary: only the sum of the counts is constant. (Note: in the resampling procedure for chisq.test in the stats package of R, both row and column sums are required to equal the corresponding sums for the original data.)

Value

Graphical and numerical output

Author(s)

Homer White <hwhite0@georgetowncollege.edu>

Examples

```r
## Not run:
ChisqSimSlow(~weather+crowd.behavior,data=ledgejump,effects="fixed")
```

End(Not run)

chisqtestGC
Chi-Square Test (GC version)

Description

Perform chi-square test, either goodness of fit or test for association. Enter either formula-data input or a summary table. Simulation is optional.

Usage

```r
chisqtestGC(x, data = parent.frame(), p = NULL, graph = FALSE,  
simulate.p.value = FALSE, B = 2000, verbose = TRUE)
```
chisqtestGC

Arguments

x Could be a formula. If so, either ~var (for goodness of fit) or ~var1+var2 (for test for association). Otherwise either a table, matrix or vector of summary data.
data dataframe supplying variables for formula x. If variables in x are not found in the data, then they will be searched for in the parent environment.
p For goodness of fit, a vector of probabilities. This will be automatically scaled so as to sum to 1. Negative elements result in an error message.
graph produce relevant graph for P-value (chi-square curve or histogram of simulation results).
simulate.p.value If FALSE, use a chi-square distribution to estimate the P-value. Other possible values are "random" and "fixed" and TRUE. Random effects are suitable for resampling when the data are a random sample from a population. Fixed effects assume that the values of the explanatory variable (row variable for table, var1 in formula ~var1+var2) remain fixed in resampling, and values of response variable are random with null distribution estimated from the data. When set to TRUE, we implement an equivalent to R’s routine. In our view procedure is most suitable when the data come from a randomized experiment in which the treatment groups are the values of the explanatory variable.
B number of resamples to take.
verbose If TRUE, include lots of information in the output.

Value

an object of class GCchisqtest

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

#Goodness of fit test for one factor variable:
chisqtestGC(~seat,data=mlllsurvey,p=c(1/3,1/3,1/3))

#Test for relationship between two factor variables:
chisqtestGC(~sex+seat,data=mlllsurvey)

#You can input a two-way table directly into chisqtestGC():
SexSeat <- xtabs(~sex+seat,data=mlllsurvey)
chisqtestGC(SexSeat)

#Several types of simulation are possible, e.g.:
chisqtestGC(~weather+crowd.behavior,data=ledgejump,simulate.p.value="fixed",B=2500)

#For less output, set argument verbose to FALSE:
chisqtestGC(~sex+seat,data=mlllsurvey,verbose=FALSE)
chugtime

Time to Chug

Description

College-aged males chugging a 12-ounce can of a certain beverage.

Format

A data frame with 13 observations on the following 2 variables.

- **Weight**: Weight of the subject (in pounds).
- **ChugTime**: How long (in seconds) the subject requires to drink the beverage.

Source

cimean

Confidence Intervals (for one population mean)

Description

An app to investigate how sample size and confidence level affect the width of a confidence interval. A sample is drawn from the input population and a confidence interval for the population mean is calculated. The kernel density plot for the population and the histogram for each new sample are plotted, along with the confidence interval. Summary information is output to the console to tally the number of times the computed confidence interval covers the true population mean and how many times it misses. There is an option to draw 100 or 1000 samples at a time.

Usage

`cimean(form, data)`

Arguments

- **form**: a formula of the form ~var.
- **data**: A data frame from which var is drawn.

Value

Graphical and numerical output

Author(s)

Rebekah Robinson <rebekah_robinson@georgetowncollege.edu>
CIProp

Examples

Not run:
if (require(manipulate)) CIMean(~height, data=imagpop)

End(Not run)

CIProp

Confidence Intervals (for one population proportion)

Description

An app to investigate how many times a confidence interval for one population proportion captures the true population parameter. The true population proportion is plotted as a vertical red line and the user can visually see how changes to the sample, population proportion, sample size, and confidence level affect the width of the confidence interval. Summary information is output to the console to tally the number of times the computed confidence interval covers the true population mean and how many times it misses.

Usage

CIProp()

Value

Graphical and numerical output

Note

Uses manipulate from RStudio

Author(s)

Rebekah Robinson <rebekah_robinson@georgetowncollege.edu>

Examples

Not run:
if (require(manipulate)) CIProp()

End(Not run)
colPerc
Column Percents

Description
Computes column percentages for a given twoway table.

Usage
```
colPerc(tab)
```

Arguments
- `tab` A two way table, e.g., the result of `xtabs(~var1+var2,data=dataframe)`.

Value
An object of class `table`, giving column percentages for the input table.

Author(s)
Homer White <hwhite@georgetowncollege.edu>

Examples
```
MyTable <- xtabs(~weather+crowd.behavior,data=ledgejump)
colPerc(MyTable)
```

deathpen
The Death Penalty and Race

Description
A dataset recreated from summary data that describes relationships between race of defendant, race of victim, and outcome of trial in a number of capital cases in Florida in 1976-1977.

Format
A data frame with 326 rows and 3 variables
- `defrace` Race of the defendant in the capital case
- `vicrace` Race of the victim
- `death` Whether or not the defendant in the case received the death penalty

Source
DtrellHist

Dynamic Trellising (Histogram)

Description
A manipulative app that facilitates exploration of the distribution of a single numerical variable, conditioned upon the values of either a numerical variable or a factor.

Usage
\[\text{DtrellHist(form, data)}\]

Arguments
- **form**: a formula of the form \(~\text{var} \vert \text{cond}~\). \text{var} must be numeric; \text{cond} may be either numeric or factor.
- **data**: A data frame from \text{var} and \text{cond} are drawn.

Value
Graphical output.

Author(s)
Homer White <hwhite@georgetowncollege.edu>

Examples
```r  
## Not run:  
if (require(manipulate)) DtrellHist(~dist \vert speed, data=cars)  
## End(Not run)  
```

DtrellScat

Dynamic Trellising (Scatterplot)

Description
An app to facilitate exploration of the relationship between two numerical variables, conditional upon the values of a third variable.

Usage
\[\text{DtrellScat(form, data)}\]
EmpRule

Arguments

form A formula of the form y~x|c. All three variables in the formula should be from the data frame data. c May be a factor or numerical.
data A data frame.

Value

Graphical and numerical output.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
if (require(manipulate)) DtrellScat(sat=salary|frac, data=sat)
## End(Not run)
```

Empirical Rule

Description

An app to investigate how the Empirical Rule applies to symmetric data and skewed data. The user can select if they want to view a histogram of symmetric data or skewed data. Vertical bars are also plotted to signify one, two, and three standard deviations from the mean. Summary data is output to the console giving the proportion of the histogram that falls within one, two, and three standard deviations of the mean.

Usage

EmpRule()

Value

Graphical and numerical output

Author(s)

Rebekah Robinson <rebekah_robinson@georgetowncollege.edu>

Examples

```r
## Not run:
if (require(manipulate)) EmpRule()
## End(Not run)
```
EmpRuleGC

Graphical Calculator for the Empirical Rule

Description

An app to facilitate visual understanding of Empirical Rule approximations of probabilities, per-
centages.

Usage

EmpRuleGC(mean=0,sd=1,xlab="x")

Arguments

- **mean**: Mean of the distribution
- **sd**: Standard deviation of the distribution
- **xlab**: x-axis label

Value

Returns no value. Used for the plotting side-effects.

Note

Uses manipulate in RStudio

Author(s)

Homer White <hwhite0@georgetowncollege.edu>

Examples

```r
## Not run:
if(require(manipulate)) EmpRuleGC(mean=70,sd=3,xlab="Height (inches)")

## End(Not run)
```
expCounts \hspace{1cm} \textit{Expected Cell Counts From Two-Way Tables}

\section*{Description}

Simple instructional function to compute expected cell counts from a table of observed counts.

\section*{Usage}

\begin{verbatim}
expCounts(tab)
\end{verbatim}

\section*{Arguments}

\begin{verbatim}
tab \hspace{1cm} A table with two dimensions, or an object that can be coerced to one.
\end{verbatim}

\section*{Author(s)}

Homer White <hwhite0@georgetowncollege.edu>

\section*{FakeSchool \hspace{1cm} \textit{An Imaginary School}}

\section*{Description}

Hypothetical school, used for illustrative purposes

\section*{Format}

A data frame with 28 observations on the following 5 variables.

- \textbf{Students} Name of each student
- \textbf{Sex} sex of the student
- \textbf{class} class rank of the student
- \textbf{GPA} grade point average
- \textbf{Honors} whether or not he student is in the Honors Program
FindRegLine

Description
The regression minimizes the residual sum of squares (RSS). In this game, the player chooses slope and y-intercept of a line so as to approximate the regression line. The moveable line is set initially as a horizontal line with height equal to the mean of the y-coordinates of the scatterplot, so initially the residual sum of squares equals the total sum of squares (TSS). The player’s score is the sum of the number of turns taken and the difference between the current RSS and the regression line’s RSS (as a percentage of TSS-RSS for regression line). The aim is to lower one’s score.

Usage
FindRegLine

Value
Graphical and numerical output.

Note
Requires package manipulate, available only in RStudio.

Author(s)
Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
if (require(manipulate)) FindRegLine()

## End(Not run)
```

fuel

Description
A British Ford Escort was driven along a prescribed course. Each drive was done at a different speed, and the fuel efficiency was recorded for each drive.
Format

A data frame with 15 observations on the following 2 variables.

speed in kilometers per hour.

efficiency fuel efficiency, measured in liters of fuel required to travel 100 kilometers.

Source

The Basic Practice of Statistics, by Moore and McCabe.

galton

Galton’s Father-Son Data

Description

Data on father-son pairs. Collected in 1885 by Francis Galton.

Format

A data frame with 1078 observations on the following 2 variables.

fheight Height of the father, in inches.

sheight Height of the son, in inches.

gcfeeling

Feelings About Georgetown College

Description

Results of a survey conducted by Georgetown College students on 47 Georgetown College upper-class students.

Format

A data frame with 47 observations on the following 6 variables.

rating.fresh how happy the subjects remembers being as a first-year student, on a scale of 1 to 10.

rating.js how happy the subjects feels now, on a scale of 1 to 10.

greek whether or not the subject belongs to a greek organization.

athlete whether or not the subject is a varsity athlete

rating.diff upper-level happiness rating minus remembered first-year rating

happier whether or not subject feels happier now than as a first-year student

Source

MAT 111 at Georgetown College
gcstudents

Georgetown College Students

Description

Data collected by GC students.

Format

A data frame with 62 observations on the following 4 variables.

height height of the survey participant, in inches
GPA grade-point average
enough_Sleep Does the participant feel that he/she gets enough sleep?
sex sex of the survey participant

Source

MAT 111 at Georgetown College

gss02

General Social Survey, 2002

Description

The General Social Survey (GSS) is a nationwide poll that has been conducted since 1972 (semian-
nually since 1994). Most interviews are done face-to-face. For further information, see below.

Format

A data frame with 2765 observations on the following 13 variables.

sex a factor with levels Female Male
race a factor with levels AfrAm Hispanic Other White
degree a factor with levels Bachelor Graduate HighSchool JunColl NotHzs
relig a factor with levels Catholic Jewish Other Protestant
polparty a factor with levels Democrat Independent Other Republican
cappun a factor with levels Favor Oppose Whether or not the subject favors capital punishment.
tvhours the subject estimates number of hours per day he or she watches TV.
marijuan a factor with levels Legal NotLegal Whether or not subject believes that marijuana
 should be legalized.
onowngun a factor with levels No Yes. Does the subject own a gun?
gunlaw a factor with levels Favor Oppose Whether or not the subject favors stricter gunlaws.
age age of the subject
chldidel the ideal number of children the subject would like to have.
emailtime estimated number of hours per week subject spends using email.
Source

gss08

General Social Survey, 2008

Description

General Social Survey, 2008

Format

A data frame with 2023 observations on the following 12 variables.

sex a factor with levels Female Male
race a factor with levels AfrAm Other White
degree a factor with levels Bachelor Graduate HighSchool JunColl NotHs
relig a factor with levels Catholic Jewish None Other Protestant
polparty a factor with levels Democrat Independent Other Republican
cappun a factor with levels Favor Oppose
tvhours a numeric vector
marijuan a factor with levels Legal NotLegal
owngun a factor with levels No Yes
gunlaw a factor with levels Favor Oppose
age a numeric vector
chldidel a numeric vector

Source

References

For more information see gss02
Description

A selection of variables from the 2012 General Social Survey. The variables are as follows:

- age. Age of the subject.
- sex. Sex of the subject.
- race. Race of the subject.
- polviews. Subject's political views.
- relig. Religion of the subject.
- cappun. Opinion on capital punishment.
- owngun. Whether or not one owns a gun.
- emailhr. Number of hours per week spent on email.
- bigbang. Whether or not subject believes the Big Bang theory is true.
- premarsx. Opinion on premarital sex.
- pornlaw. Should pornography be legal?
- zodiac. Sign of the Zodiac under which the subject was born.

Format

A data frame with 1976 rows and 12 variables

Source

http://www3.norc.org/gss+website/.

Description

A study performed by MAT 111 students at Georgetown College.

Format

A data frame with 100 observations on the following 3 variables.

- sex a factor with levels female male
- hair.color a factor with levels dark light
- act composite ACT score of subject.

Source

MAT 111 at Georgetown College
26

`hanford1`
Height and Handspan

Description
Height and handspan of a few subjects.

Format
A data frame with 167 observations on the following 3 variables.

- **Sex**
 a factor with levels Female Male
- **Height**
 height of subject, in inches.
- **HandSpan**
 handspan of subject, in centimeters.

Source

`hanfordQ`
Handford Weather Station, 1984-2010

Description
The station is located in Hanford, WA.

Format
A data frame with 27 observations on the following 2 variables.

- **year**
 calendar year
- **temp**
 average high temperature for that year.

Source
See http://www.hanford.gov/hms/
Description

The weather station is located in Hanford, WA. Note that this dataset is more complete than hanford1.

Format

A data frame with 66 observations on the following 2 variables.

- **year**: calendar year
- **temp**: average high temperature for that year.

Source

See www.hanford.gov/hms/

帮helpGC

Quick Vignettes in the Viewer

Description

A convenience function to show package vignettes. Vignette will show in a viewer selected by the front-end (e.g, the Viewer pane in R Studio), or in a browser if the "viewer" option is not set.

Usage

helpGC(topic, package="tigerstats")

Arguments

- **topic**: filename of the vignette, exclusive of the .html extension
- **package**: Name of the installed package containing the desired vignette

Value

side effects

Author(s)

Homer White (hwhite0@georgetowncollege.edu)
Examples

```r
## Not run:
helpGC(lmGC)
```

End(Not run)

henderson

Ricky Henderson's Career Stats

Description

Various year-by-year statistics for the Major League player Ricky Henderson

Format

A data frame with 23 observations on the following 18 variables.

- **Season** season
- **TM** team played for
- **G** number of games played in
- **AB** number of at-bats
- **R** runs scored
- **H** number of base hits
- **X2B** doubles
- **X3B** triples
- **HR** home runs
- **RBI** runs batted in
- **BB** bases on balls
- **SO** number of times struck out
- **SB** Number of stolen bases
- **CS** number of times caught stealing
- **AVG** batting average
- **OBP** on-base percentage
- **SLG** slugging rate
- **OPS** on-base plus slugging

Source

unknown (possibly Albert: Teaching Statistics With Baseball)
Description

Data on the 147 batters inducted into the Major League Baseball Hall of Fame as of the year 2013.

Format

A data frame with 147 observations on the following 29 variables.

Name Player name
Rk Unknown
Inducted Year inducted into Hall of Fame
Yrs Number of years played in the Majors
From First year in the Majors
To Last year in the Majors
MidCareer Middle year of player’s career
Era Era of Baseball history in which the player was (for the most part) active. Values are: 19th century (before 1900), Dead Ball (1900-1919), Lively Ball (1920-1940), Integration, (1941-1959), Expansion (1960-1975), Free Agency (1976-1992), Long Ball (1993 +).
ASG Number of All-Star games played
WAR.pos Wins above replacement (WAR), as defined for a position player
G Games played
PA Number of plate appearances
AB Number of times at bat
R Runs scored
H Base hits
X2B Doubles
X3B Triples
Triple.Rate Number of triples divided by number of times at bat
HR Home runs
HR.Rate Number of home runs divided by number of times at bat
RBI Runs batted in
SB Number of successful stolen base attempts
CS Number of times thrown out while attempting to steal a base
BB Base on Balls (number of times "walked")
SO Number of times struck out
BA Batting average
OBP On base percentage
SLG Slugging average
OPS OBP plus SLG
hofpitching

Source

hofpitching Hall of Fame Pitchers

Description

Data on the 70 pitchers inducted into the Major League Baseball Hall of Fame as of the year 2013.

Format

A data frame with 147 observations on the following 32 variables.

Name Player name
Rk Unknown
Inducted Year inducted into Hall of Fame
Yrs Number of years planed in the Majors
From First year in the Majors
To Last year in the Majors
MidCareer Middle year of player’s career
Era Era of Baseball history in which the player was (for the most part) active. Values are: 19th century (before 1900), Dead Ball (1900-1919), Lively Ball (1920-1940), Integration, (1941-1959), Expansion (1960-1975), Free Agency (1976-1992), Long Ball (1993 +).
ASG Number of All-Star games played
WAR Wins above replacement
W Games won
L Games lost
W.L. proportion of games won
ERA Earned run average
G Games played
GS Games started
GF Games finished
CG Complete games
SHO Shut-outs
SV Saves
IP Innings pitched
H Hits allowed
R Runs allowed
ER Earned Runs allowed
imagpop

<table>
<thead>
<tr>
<th>HR</th>
<th>Home Runs allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB</td>
<td>Bases on Balls (number of "walks")</td>
</tr>
<tr>
<td>IBB</td>
<td>Intentional walks</td>
</tr>
<tr>
<td>SO</td>
<td>Strikeouts</td>
</tr>
<tr>
<td>HBP</td>
<td>Hit batter with pitch (?)</td>
</tr>
<tr>
<td>BK</td>
<td>Balks</td>
</tr>
<tr>
<td>WP</td>
<td>Wild Pitches</td>
</tr>
<tr>
<td>BF</td>
<td>Total batters faced</td>
</tr>
</tbody>
</table>

Source

<table>
<thead>
<tr>
<th>imagpop</th>
<th>An Imaginary Population</th>
</tr>
</thead>
</table>

Description

An imaginary population, used for instructional purposes. The variables are as follows:

- **sex.** (male, female).
- **math.** Whether or not you were a mathematics major.
- **income.** Your annual income, rounded to the nearest $100.
- **cappun.** Opinion about the death penalty (favor, oppose).
- **height.** Height in inches.
- **idealheight.** The height you would like to be, in inches.
- **diff.** Idealheight - actual height.
- **kkardashtemp.** Your feelings about Kim Kardashian on a 0-100 scale (0=very cold, 100=very warm).

Format

A data frame with 10000 rows and 8 variables
iqsiblings
IQs of Siblings

Description
IQs of pairs of siblings.

Format
A data frame with 80 observations on the following 2 variables.

- **First** IQ of the older sibling.
- **Second** IQ of the younger sibling.

Source
William Harris, Georgetown College

knifeorgunblock
Knife or Gun?

Description
What will make you yell louder: being killed with a knife or being killed with a gun? Results of an entirely imaginary experiment performed on very strange volunteers. Members of the Knife group are killed by a knife, and members of the Gun group are killed by a gun. The volume of the screams of each subject during slaying is recorded. In order to ensure that the two groups are similar with respect to how loud they can yell in the first place, subjects are blocked by whether or not they have participated in hog-hollering contests. After blocking, subjects are randomly assigned to groups.

Format
A data frame with 20 observations on the following 3 variables.

- **hohgollerer** a factor with levels no yes whether or not the subject competes in hog-hollerin’ contests
- **means** a factor with levels gun knife means by which subject is slain
- **volume** volume of expiring subject’s cries.

Source
A morbid imagination.
labels

Labels and Perception of Quality

Description

Students in MAT 111 performed an experiment to see whether the perception of the quality of peanut butter was affected by the labeling on the peanut butter jar. Each subject tasted from two jars, one of which was labeled Jiff, and the other of which was labeled Great Value (a cheaper brand). Unknown to the subjects, both jars contained Great Value peanut butter. Each subject rated the quality of the peanut butter on a scale of 1 to 10.

Format

A data frame with 30 observations on the following 3 variables.

- **jiffrating** rating subject gave to the PB in the jar with the Jiff label
- **greatvaluerating** rating subject gave to the PB in the jar with the Great Value label
- **sex** a factor with levels *female* *male*

Source

MAT 111 at Georgetown College

ledgejump

Crowd Behavior at Ledge-Jumping Incidents

Description

A dataset recreated from summary data describing the relationship between weather and crowd behavior during 21 recorded incidents in England, in which a (suicidal) person was contemplating jumping from a ledge or other high structure and a crowd gathered to watch. The variables are as follows:

- **weather.** Warm or cool, based on the time of year when the incident occurred.
- **crowd.behavior.** The crowd either baited the would-be jumper, or was polite.

Format

A data frame with 21 rows and 2 variables

Source

lmGC
Linear Regression

Description

Regression analysis (one numerical predictor variable) with simplified output. Wrapper function for `lm` in package stats.

Usage

```r
lmGC(formula, data=parent.frame(), graph=FALSE, check=FALSE)
```

Arguments

- `form`: formula of form `y~x`, both variables numeric
- `data`: dataframe supplying `y` and `x` above. If one or more of the variables is not in `data`, then they will be searched for in the parent environment.
- `graph`: Produce scatterplot with fitted polynomial, together with prediction standard error bands
- `check`: Asks to produce a lowess or gam curve with approximate 95% fitted line wanders outside the band, then perhaps a linear fit is not appropriate.

Value

A list of class "GClm". Elements that may be queried include "slope", "intercept", "s" (residual standard error), "R^2" (unadjusted).

Author(s)

Homer White <hwhite0@georgetowncollege.edu>

Examples

To study the relationship between two numerical variables:

```r
lmGC(formula=fastest~GPA, data=m11survey, graph=TRUE)
```
Description

Results of a survey of MAT 111 students at Georgetown College.

- height. How tall are you, in inches?
- ideal_ht. A numeric vector How tall would you LIKE to be, in inches?
- sleep. How much sleep did you get last night?
- fastest. What is the highest speed at which you have ever driven a car?
- weight_feel. How do you feel about your weight?
- love_first. Do you believe in love at first sight?
- extra_life. Do you believe in extraterrestrial life?
- seat. When you have a choice, where do you prefer to sit in a classroom?
- GPA. What is your college GPA?
- enough_Sleep. Do you think you get enough sleep?
- sex. What sex are you?
- diff. Your ideal height minus your actual height.

Format

A data frame with 71 rows and 12 variables

Source

Georgetown College, MAT 111.

Description

Results of a survey given at beginning of semester, to all students in MAT 111.
Format
A data frame with 89 observations on the following 14 variables.

- height Your height in inches.
- ideal_ht How tall you would LIKE to be, in inches.
- sleep How much sleep you got last night, in hours.
- fastest What is the highest speed at which you have ever driven a car (in mph)?
- wt_feel a factor with levels 1_underweight 2_about_right 3_overweight How do you feel about your weight?
- love_first a factor with levels no yes Do you believe in love at first sight?
- et_life a factor with levels no yes Do you believe in life on other planets?
- seat a factor with levels 1_front 2_middle 3_back When you have a choice, where do you prefer to sit in a classroom?
- GPA What is your current GPA?
- engh_slp a factor with levels no yes Do you think you get enough sleep?
- sex a factor with levels female male What sex are you?
- anchor a factor with levels australia united_states (Anchor for the next question.) For the next question, either Australia or the US, along with its population, was given in the leadup information to the question. The "anchor" variable records which version of the question you were given.
- canada "The population of country XXX is YYY million. About what is the population of Canada, in millions?" XXX was either the U.S. or Australia.
- diff.ih.ah. Your ideal height minus your actual height.

Source
MAT 111 at Georgetown College

Description
Results of a survey given at beginning of semester, to all students in MAT 111.

Format
A data frame with 85 observations on the following 14 variables.

- height Your height in inches.
- ideal_ht How tall you would LIKE to be, in inches.
- sleep How much sleep you got last night, in hours.
fastest What is the highest speed at which you have ever driven a car (in mph)?
weight_feel a factor with levels 1_underweight 2_about_right 3_overweight How do you feel about your weight?
love_first a factor with levels no yes Do you believe in love at first sight?
extra_life a factor with levels no yes Do you believe in life on other planets?
seat a factor with levels 1_front 2_middle 3_back When you have a choice, where do you prefer to sit in a classroom?
GPA What is your current GPA?

enough_Sleep a factor with levels no yes Do you think you get enough sleep?

sex a factor with levels female male What sex are you?

diff ideal height minus actual height
symbol a factor with levels a b (Anchor for the next question.) For the next question, either Australia or the US, along with its population, was given in the leadup information to the question. The "anchor" variable records which version of the question you were given. If "a", the population of Australia was given. If "b", the U.S. population was given.

pop_Canada "The population of country XXX is YYY million. About what is the population of Canada, in millions?" XXX was either the U.S. or Australia.

Source
MAT 111 at Georgetown College

MeanSampler

Repeated Sampling for a Mean (Slow)

Description

An app to explore the sampling distribution of the sample mean. The user takes one sample at a time from a given population. Output to the console describes relevant features of the sample, and graphical output updates the empirical distribution of the sample mean.

Usage

MeanSampler(form,data,max.sample.size=30,show.sample=FALSE)

Arguments

- **form**
 an object of class formula, of the form ~x, where x is a numeric variable from the data frame supplied by:

- **data**
 A dataframe, representing the imaginary population.

- **max.sample.size**
 Maximum sample size on the slider.

- **show.sample**
 If TRUE, the complete sample will be output to the console, in addition to the summary information.
Description

An experiment performed by a student at Georgetown College. Forty-four subjects were randomized into four groups. All subjects read an article; one group read in a silent environment, while the other three groups heard each three different genres of music. Each subject took a reading comprehension test afterward.

- sex a factor with levels Female Male
- year class rank of subject
- computer a numeric vector
- type type of music subject listened to while reading
- score number of questions correct on reading comprehension test

Format

A data frame with 44 observations on 4 variables.

Source

Matt Doolin, MAT 111 at Georgetown College
napkins: Napkin Use

Description

Students at GC observed their fellow students in the Cafe at lunch.

Format

A data frame with 86 observations on the following 2 variables.

- **napkins**: number of napkins used by the subject during the meal.
- **sex**: a factor with levels `female`, `male`. Sex of the person being observed.

Source

MAT 111 at Georgetown College

nonresponse: Non-Response to Surveys

Description

Results of a study on non-response to a mail survey. Subjects were residents of Denmark.

Format

A data frame with 4229 observations on the following 3 variables.

- **residence**: where the subject resides: either in Copenhagen, a city outside of Copenhagen, or in the countryside.
- **gender**: sex of the subject.
- **response**: Whether or not the subject responded to the mail survey.

Source

nosmokeday

Description

Results of study conducted in Great Britain to see if nicotine withdrawal increases the risk of an accident.

Format

A data frame with 10 observations on the following 3 variables.

- **year** calendar year
- **Injuries.before.NSD** number of injury accidents on the day one week prior to National No Smoke Day in the United Kingdom
- **Injuries.on.NSD** number of injury accidents on National No Smoke Day in the United Kingdom

Source

oldfaithful

Description

Old faithful geyser at Yellowstone Park.

Format

A data frame with 299 observations on the following 2 variables.

- **Duration** duration of eruption, in minutes
- **TimeNext** time until the next eruption, in minutes

Source

Unknown
ostrichtemp

Body and Brain Temperatures of Ostriches

Description

Body and brain temperatures of six free-ranging ostriches.

Format

A data frame with 6 observations on the following 2 variables.

- **body.temp** carotid arterial blood temperature of the ostrich (degrees Centigrade).
- **brain.temp** brain temperature (near hypothalamus) of the ostrich (degrees Centigrade).

Source

Ovarian

Ovarian Cancer Study

Description

Results of a retrospective study, conducted in 1973, on 299 women who been surgically treated for ovarian cancer 10 years before.

Format

A data frame with 299 observations on the following 4 variables.

- **stage** factor indicating the stage of the cancer at the time of operation (early, advanced)
- **operation** factor indicating the amount of tissue removed during surgery (radical,limited)
- **survival** whether or not the subject was still alive after ten years (yes,no)
- **xray** factor indicating whether or not the subject also received x-ray treatments (yes,no)

Source

pbinomGC

Graphical Calculator for Binomial Curve Probabilities

Description

Shades desired areas under rectangles of probability histogram for binomial, returns numerical value of the area.

Usage

```r
pbinomGC(bound, region="below", size=100, prob=0.5, graph=FALSE)
```

Arguments

- `bound`: A numerical vector of length 1 or 2, range of shaded rectangles.
- `region`: A character string. Default is "below". Possible values are "between" (when boundary consists of two numbers), "below", "above", and "outside" (again when boundary consists of two numbers).
- `size`: Number of trials.
- `prob`: Probability of success.
- `graph`: produce graph?

Value

Numerical value of probability.

Author(s)

Homer White `<hwhite0@georgetowncollege.edu>`

Examples

- This gives \(P(X \leq 6) \) for binom \(X \) with 10 trials, chance of success 0.70 on each trial:
  ```r
  pbinomGC(6, region="below", size=10, prob=0.70)
  ```

- This gives \(P(45 \leq X \leq 55) \), where \(X \) is binom with 100 trials, chance of success on each trial \(p = 0.50 \):
  ```r
  pbinomGC(c(45,55), region="between", size=100, prob=0.50)
  ```

- This gives \(P(X \geq 7) = P(X > 6) \), for binom \(X \) with 10 trials, 70% chance of success on each trial:
  ```r
  pbinomGC(6, region="above", size=10, prob=0.7)
  ```
Description

Shades desired areas under a specified chi-square curve, returns numerical value of the area.

Usage

```
pchisqGC(bound, region="above", df=NA, xlab="chi_square_statistic", graph=FALSE)
```

Arguments

- `bound`: A numerical vector of length 1, indicating boundary of shaded region on horizontal axis
- `region`: A character string. Possible values are "below" and "above"
- `df`: Degrees of freedom of the chi-square distribution
- `xlab`: Label for the horizontal axis
- `graph`: produce graph?

Value

Numerical value of area under curve over region. Also plots the chi-square curve with the shaded area.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

#This gives P(X < 6.8) where X is chisq with 3 degrees of freedom:
pchisqGC(6.8, df=3, region="below")

#This gives P(X >= 6.8), where X is chisq with 3 degrees of freedom
pchisqGC(6.8, df=3, region="above")
pennstate1

Penn State #1

Description

A study of students at Penn State University.

Format

A data frame with 190 observations on the following 9 variables.

Sex a factor with levels F M

HrsSleep how many hours of sleep the subject gets per night

SQpick a factor with levels Q S. Each subject was presented with two letters (S and Q), and asked to pick one. This variable indicates which letter the subject picked.

Height height in inches

RandNumb a numeric vector: Each subject was asked to choose randomly an integer from 1 to 10.

Fastest highest speed, in mph, at which subject has ever driven a car

RtSpan span of the right hand, in centimeters.

LftSpan span of the left hand, in centimeters.

Form a factor with levels Qor S SorQ. The order of presentation of the S and Q options to the subject varied from one survey form to another. This variable indicates which letter was presented first on the form.

Source

plot.GClm

Diagnostic Plots for GC Linear Regression

Description

Used by generic plot function

Usage

```r
# S3 method for class 'GClm'
plot(x,...)
```
plot.polyGC

Arguments

x An object of class GClm

Value

two diagnostic plots

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

speedmodel <- lmgc(fastest~gpa,data=m11survey)
plot(speedmodel)

plot.polyGC

Diagnostic Plots for GC Polynomial Regression

Description

Used by generic plot function

Usage

S3 method for class 'polyGC'
plot(x,...)

Arguments

x An object of class polyGC

Value

two diagnostic plots

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

mpgModel <- polyfitGC(mpg~wt,data=mtcars)
plot(mpgModel)
pnormGC

Graphical Calculator for Normal Curve Probabilities

Description
Shades desired areas under a specified normal curve, returns numerical value of the area.

Usage
```r
pnormGC(bound, region="below", mean=0, sd=1, graph=FALSE)
```

Arguments
- `bound` A numerical vector of length 1 or 2, indicating boundary(ies) of shaded region on horizontal axis
- `region` A character string. Default is "below". Possible values are "between" (when boundary consists of two numbers), "below", "above", and "outside" (again when boundary consists of two numbers)
- `mean` Mean of the distribution
- `sd` Standard deviation of the distribution
- `graph` Will produce graph of the probability

Value
Numerical value of area under curve over region.

Author(s)
Homer White <hwhite@georgetowncollege.edu>

Examples
```r
#This gives P(X < 75) for X normal with mean=70 and sd=4:
pnormGC(75, region="below", mean=70, sd=4)

#This gives P(X > 71) for X normal with mean=70 and sd=4:
pnormGC(71, region="above", mean=70, sd=4)

#This gives P(-1 < X < 1), for standard normal X:
pnormGC(c(-1,1), region="between")

#This gives P(X < 68 or X > 71), for X normal with mean =70 and sd=4:
pnormGC(c(68,71), region="outside", mean=70, sd=4)
```
Points2Watch

Description

An app to explore the idea of influence. Note how the influence of the blue point wanes as the number of points in the central cloud increases, and also wanes as the correlation of the central cloud increases.

Usage

Points2Watch()

Value

Graphical output.

Note

Requires package manipulate, available only in RStudio. Uses mvrnorm from package MASS.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
if (require(manipulate)) Points2Watch()
## End(Not run)
```

polyfitGC

Polynomial Regression

Description

Regression analysis (one numerical predictor variable) with simplified output. Wrapper function for lm in package stats.

Usage

polyfitGC(form,data=parent.frame(),degree=2,graph=TRUE,check=FALSE)
popsamp

Arguments

- **form**: formula of form y~x, both variables numeric
- **data**: dataframe supplying y and x above. If one or more of the variables is not in data, then they will be searched for in the parent environment.
- **degree**: desired degree of polynomial (for degree 1 use lmgC)
- **graph**: Produce scatterplot with fitted polynomial.
- **check**: Asks to produce a lowess or gam curve with approximate 95 fitted line wanders outside the band, then perhaps a linear fit is not appropriate.

Value

A list of class "polyGC". Elements that may be queried include "s" (residual standard error) and "R^2" (unadjusted).

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
# To study the relationship between two numerical variables:
polyfitGC(mpg~wt,data=mtcars,degree=2,graph=TRUE)
# check the second-degree fit:
polyfitGC(mpg~wt,data=mtcars,degree=2,check=TRUE)
```

popsamp Sampling From a Population

Description

Instructional function, and possibly a utility function for some apps.

Usage

```r
popsamp(n,pop,...)
```

Arguments

- **n**: number of items to sample
- **pop**: data frame, from which to sample n rows
- **...**: other arguments passed to function

Value

The sample, as a data frame.
Author(s)
Homer White <hwhite@georgetowncollege.edu>

Examples
data(imagpop)
popsamp(10, imagpop) # Simple random sampling (no replacement)
popsamp(10, imagpop, replace=TRUE) # Random sampling with replacement

predict.GClm
Description
Used by generic predict function

Usage
S3 method for class 'GClin'
predict(object, x, level=NULL,...)

Arguments
object
An object of class GClin
x
value of the predictor variable
level
desired level of prediction interval
...
ignored

Value
numeric prediction

Author(s)
Homer White <hwhite@georgetowncollege.edu>

Examples
predict fastest speed driven, for person with GPA=3.0:
SpeedModel <- lmGC(fastest~GPA, data=millsurvey)
predict(SpeedModel, x=3.0)
include prediction interval:
predict(SpeedModel, x=3.0, level=0.95)
predict.polyGC
Prediction Function for GC Polynomial Regression

Description

Used by generic predict function

Usage

```r
## S3 method for class 'polyGC'
predict(object, x, level=NULL, ...)
```

Arguments

- `object` An object of class `polyGC`
- `x` value of the predictor variable
- `level` desired level of prediction interval
- `...` ignored

Value

numeric prediction

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
# predict mpg for a car weighing 3 tons:
mpgModel <- polyfitGC(mpg~wt, data=mtcars, degree=2)
predict(mpgModel, x=3.0)
# include prediction interval:
predict(mpgModel, x=3.0, level=0.95)
```

PropSampler
Repeated Sampling for a Proportion (Slow)

Description

An app to explore the sampling distribution of the sample proportion. The user takes one sample at a time from a given population. Output to the console describes relevant features of the sample, and graphical output updates the empirical distribution of the sample proportion.
Usage

PropSampler(form, data, max.sample.size=110, show.sample=FALSE)

Arguments

form An object of class formula, of the form ~x, where x is a factor from the data frame supplied by:
data A dataframe, representing the imaginary population.
max.sample.size Maximum sample size on the slider.
show.sample If TRUE, the complete sample will be output to the console, in addition to the summary information.

Value

Graphical and numerical output.

Note

Uses manipulate.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

Not run:
data(imgpop)
if (require(manipulate)) PropSampler(~cappun, data=imgpop)

End(Not run)

proptestGC
Proportions Procedures

Description

Employs the normal approximation to perform test for one or two proportions.

Usage

proptestGC(x, data=parent.frame(), n=numeric(), p=NULL,
alternative=c("two.sided", "less", "greater"),
success="yes", first=NULL, conf.level=0.95,
correct=TRUE, graph=FALSE, verbose=TRUE)
Arguments

x Either a formula or a numeric vector. If formula, it must be of the form ~x indicating the single variable under study, or of the form ~x+y, in which case x is the explanatory grouping variable (categorical with two values) and y is the response categorical variable with two values. When summary data are provided, x is a numeric vector of success counts.

data Data frame that supplies the variables x and y. If any are not in data, then they will be searched for in the parent environment.

n When not empty, this is a numeric vector giving the size of each sample.

p Specifies Null Hypothesis value for population proportion. If not set, no test is performed.

alternative "two.sided" requests computation of a two-sided P-value; other possible values are "less" and "greater".

success When x is a formula, this argument indicates which value of variable x (in case of ~x) or y (in case of ~x+y) is being counted as a success. When working with formula-data input the value of this parameter MUST be set, even when the variable has only two values.

first When performing 2-sample procedures, this argument specifies which value of the explanatory variable constitutes the first group.

conf.level Number between 0 and 1 indicating the confidence-level of the interval supplied.

correct Applies continuity correction for one-proportion procedures. It is ignored when 2-proportions are performed.

graph If TRUE, plot graph of P-value.

verbose Indicates how much output goes to the console

Value

A list, either of class "gcp1test" (one-proportion) or "gcp2test" (two proportions). Components of this list that may be usefully queried include: "statistic", "p.value", and "interval".

Author(s)

Homer White <hwhite0@georgetowncollege.edu>

Examples

data(m11survey)
#2-proportions, formula-data input, 95%-confidence interval only:
proptestGC(~sex+seat,data=m11survey,success="2_middle")

#For other confidence levels, use argument conf.level. For 90%-interval for one proportion p:
proptestGC(~sex,data=m11survey,success="male",conf.level=0.90)

#one proportion, formula-data input, confidence interval and two-sided test with H_0: p = 0.33:
proptestGC(~seat,data=m11survey,success="1_front",p=0.33)
#Summary data:
#In first sample, 23 successes out of 100 trials. In second sample, 33 out of 110.
proptestGC(x=c(23,33),n=c(100,110))

#Summary data:
#In one sample, 40 successes in 100 trials. Testing whether p = 0.45.
proptestGC(x=40,n=100,p=0.45,correct=TRUE)

#Want less output? Set argument verbose to FALSE:
proptestGC(~sex+seat,data=m11survey,success="2_middle",p=0.33,verbose=FALSE)

ptGC

Graphical Calculator for t-Curve Probabilities

Description
Shades desired areas under a specified t-curve, returns numerical value of the area.

Usage
ptGC(bound,region="between",df=1,graph=FALSE)

Arguments
- **bound**: A numerical vector of length 1 or 2, indicating boundary(ies) of shaded region on horizontal axis
- **region**: A character string. Possible values are "between" (when boundary consists of two numbers), "below", "above", and "outside" (again when boundary consists of two numbers)
- **df**: degrees of freedom of the distribution
- **graph**: produce graph?

Value
Numerical value of area under curve over region. Also plots the t-curve with the shaded area.

Author(s)
Homer White <hwhite0@georgetowncollege.edu>

Examples
- #This gives P(-2 < t < 2) for a t-random variable with 1 degree of freedom:
 ptGC(c(-2,2),region="between",df=1)
- #This gives P(t < -1) for a t-random variable with 5 degrees of freedom:
 ptGC(-1,region="below",df=5)
- #This gives P(t < -2 OR t >2), for a t-random variable with 5 degrees of freedom:
 ptGC(c(-2,2),region="outside",df=5)
Pushups by Football Players at Georgetown College

Description
Two football players at GC asked their team-mates to do as many pushups as they could in two minutes.

Format
A data frame with 30 observations on the following 3 variables.
- **weight** weight of subject in pounds.
- **pushups** number of pushups completed.
- **position** a factor with levels LINE SKILL: type of position played by the subject. Line positions require high body mass, skill positions require a lot of running around.

Source
MAT 111, Georgetown College

qnormGC

Graphical Calculator for Normal Curve Percentiles

Description
When you know a certain area under a normal density curve, this function returns the x-axis values of the boundary of that area.

Usage

```r
gnormGC(area, region="below", mean=0, sd=1, graph=FALSE)
```

Arguments
- **area** The known percentile
- **region** A character string. Default is "below". Other possible values are "between" (when known area is symmetric around the mean two numbers), "below", "above", and "outside" (when known area is outside a region symmetric around the mean)
- **mean** Mean of the distribution
- **sd** Standard deviation of the distribution
- **graph** Will produce graph of the area
Value

Numerical value of the percentile, and a vector when there are two bounds.

Author(s)

Homer White <hwhite0@georgetowncollege.edu>

Examples

80th percentile of a normal distribution with mean=70 and sd=4:
qnormGC(0.80, region="below", mean=70, sd=4)

Return value x so that P(X > x) = 0.10 (same as the 90th percentile)
qnormGC(0.10, region="above", mean=70, sd=4)

This gives the multiplier for 95%-confidence intervals based on the z-statistic
qnormGC(0.95, region="between")

This gives critical values for a two-sided z-test with alpha = 0.01:
qnormGC(0.01, region="outside")

RandomExp: Randomized Experimental Designs

Description

Randomizes subjects into treatment groups according to specified criteria.

Usage

RandomExp(data, sizes=NULL, groups=NULL, block=NULL, seed=NULL)

Arguments

data A data frame containing the subjects to be randomized
sizes a numeric vector indicating the sizes of the treatment groups. Vector must sum
to the number of subjects. If not provided, subjects will be randomized into two
groups of size as nearly equal as possible.
groups a character vector giving the names of the groups. Names correspond to sizes
specified in previous sizes. Length of groups must equal length of sizes.
block Variable(s) in the data frame with respect to which blocking is performed. In
order to block with respect to more than one variable at once, enter as character
vector, e.g.: c("Var1","Var2").
seed randomization seed, for reproducibility of results.
Value

A data frame: the input frame data augmented with a variable treat.grp indicating the assignment of subjects to groups.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

data(SmallExp) # small hypothetical list of subjects

completely randomized design
RandomExp(SmallExp)

Block with respect to sex:
RandomExp(SmallExp,sizes=c(8,8),groups=letters[1:2],block="sex")

Block for both sex and athletic status:
RandomExp(SmallExp,sizes=c(8,8),groups=letters[1:2],block=c("sex","athlete"))

RegEstimate

Estimation of Regression Coefficients

Description

An app to explore estimation of coefficients in simple regression.

Usage

RegEstimate(x=1:10)

Arguments

x

A numerical vector, specifying the fixed set of x-values.

Value

Graphical and numerical output.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

Not run:
if (require(manipulate)) RegEstimate()

End(Not run)
Description
Computes row percentages for a given two-way table.

Usage
rowPerc(tab)

Arguments
tab A table, e.g., the result of xtabs(~var1+var2, data=DataFrame).

Value
An object of class table, giving row percentages for the input table.

Author(s)
Homer White <hwhite0@georgetowncollege.edu>

Examples
data(ledgejump)
MyTable <- xtabs(~weather+crowd.behavior, data=ledgejump)
rowPerc(MyTable)

saltmarsh

Effect of Soil Salinity on Plant Growth

Description
Result of an experiment conducted to investigate the effect of salinity level in soil on the growth of plants.

Format
A data frame with 24 observations on the following 3 variables.
salt amount of salt applied to the plot (in parts per million)
biomass total biomass of plot at the end of the study period (units unknown)
block field in which the plot was located
Details

From the source (see below): "Experimental fields of land were located at an agricultural field station, and each field was divided into six smaller plots. Each of the smaller plots was treated with a different amount of salt (measured in ppm) and the biomass at the end of the experiment was recorded."

Source

The Course Notes of Carl Schwarz, Simon Fraser University: http://people.stat.sfu.ca/~cschwarz/CourseNotes/

SampDist2Means Distribution of the Difference of Sample Means

Description

An app to explore the Central Limit Theorem in the context of the difference of sample means.

Usage

SampDist2Means(pop, max.samp.sizes=50, sim.reps=1000)

Arguments

pop A data frame representing the population from which samples are taken.
max.samp.sizes Largest sample sizes shown on the sliders.
sim.reps Number of simulation repetitions to construct empirical distribution of difference of sample means.

Value

Graphical and numerical output.

Note

Uses manipulate in RStudio. Also requires package lattice.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
data(imagpop)
if (require(manipulate)) SampDist2Means(imagpop)

## End(Not run)
```
Difference of Two Sample Proportions

Description

An app to explore the sampling distribution of the difference of two sample proportions.

Usage

```r
SampDist2Props(form, data, max.sample.sizes = 100, sim.reps = 1000)
```

Arguments

- `form` An object of class formula, of the form `~x+y` where `x` and `y` are factors supplied by:
- `data` A dataframe, representing the imaginary population. In the formula, both factors should have exactly two levels. The variable `x` represents the explanatory variable.
- `max.sample.sizes` Maximum sample sizes allowed on the sliders.
- `sim.reps` Number of samples to construct the empirical distribution.

Value

Graphical and numerical output.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
data(imagpop)
SampDist2Props(~sex+cappun, data=imagpop)

## End(Not run)
```
SampDistMean

Distribution of the Sample Mean

Description

An app to explore the Central Limit Theorem.

Usage

SampDistMean(pop, max.samp.size=50, sim.reps=1000)

Arguments

pop A data frame representing the population from which samples are taken.
max.samp.size Largest sample size shown on the slider.
sim.reps Number of simulation repetitions to construct empirical distribution of the sample mean.

Value

Graphical and numerical output.

Note

Uses manipulate in RStudio.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

Not run:
data(imagpop)
if (require(manipulate)) SampDistMean(imagpop)

End(Not run)
Description

SAT scores by state. The variables are as follows:

- **state.** A state in the U.S.
- **expend.** Mean annual expenditure per student (in 1000$).
- **ratio.** Mean student-teacher ratio.
- **salary.** Mean annual teacher salary.
- **frac.** Percentage of students in the state who take the SAT.
- **verbal.** Mean SAT Verbal score for the state.
- **math.** Mean SAT Math score for the state.
- **sat.** Sum of mean Verbal and mean Math.

Format

A data frame with 50 rows and 8 variables

Source

Description

Results of an experiment conducted on ten Weddell seals.

Format

A data frame with 10 observations on the following 2 variables.

- **o2.nonfeeding** Oxygen consumption during recovery time after a dive during which no plankton was consumed by the seal, in ml of O2 per kilogram of weight
- **o2.feeding** Oxygen consumption during recovery time after a dive during which plankton was consumed, in ml of O2 per kilogram of weight

Source

ShallowReg

Regression Line Too Shallow?

Description

The regression line is not as steep as the SD Line (line through point of averages, with slope = \(\text{sd}(y)/\text{sd}(x) \)). The difference is especially noticeable when the scatterplot is the result of a sample from a bivariate normal distribution. This app explains why we use the regression line to predict \(y \) from \(x \), even though the SD line appears to be a better linear summary of the scatterplot. Can be used as a starting-point for a discussion of "regression to the mean."

Usage

\[
\text{ShallowReg}(n=900, \rho=0.5)
\]

Arguments

- **n** Number of points in the scatterplot.
- **rho** Target correlation for the scatterplot. Points are selected from a standardized bivariate normal distribution, with correlation \(\rho \).

Value

Graphical output.

Note

Uses `manipulate`, available only in RStudio, and \(\text{mvrnorm} \) from package \texttt{MASS}.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
if (require(manipulate)) ShallowReg()

## End(Not run)
```
SimpleRandom

Simple Random Sample

Description

An app to investigate the visual and numerical differences between a sample and a population. A sample is drawn from the input population and then a variable of choice is selected by the user. If a categorical variable is chosen, the user sees a bar chart with red bars designating the population and blue bars designating the sample. Simultaneously, a summary table (of percents) is output to the console for both the population and the sample. If a numerical variable is chose, the kernel density plot for the population is plotted in red and the histogram for each new sample is plotted in blue. Simultaneously, the summary information for minimum, maximum, quartiles, median, mean, and standard deviation are output to the console for both the population and the sample. The size of the sample can be changed to explore how this affects statistics and the plots.

Usage

SimpleRandom()

Value

Graphical and numerical output

Author(s)

Rebekah Robinson <rebekah_robinson@georgetowncollege.edu>

Examples

```r
## Not run:
if (require(manipulate)) SimpleRandom()

## End(Not run)
```

SimpleRandom2

Simple Random Sample (v2)

Description

Similar to **SimpleRandom**, but with a fixed sample size set by the user.

Usage

SimpleRandom2(n=100)
Arguments

n the desired sample size

Value

Graphical and numerical output

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

Not run:
if (require(manipulate)) SimpleRandom()

End(Not run)

Skewer SkewR

Description

An app to illustrate the effect of skewness on the shape of a boxplot.

Usage

Skewer()

Value

Graphical output.

Note

Requires manipulate; uses functions from package lattice

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

Not run:
if (require(manipulate)) Skewer()

End(Not run)
SlowGoodness

Chi Square Resampler (One at a Time) for Goodness-of-Fit

Description

An app to illustrate use of the chi-square statistic to test for goodness of fit. The P-value is computed by resampling, and the resamples are done one at a time. A histogram of resampled chi-square statistics is displayed after each resample, and summary information is output to the console.

Usage

```r
SlowGoodness(x,p)
```

Arguments

- `x`: a one-dimensional table, or a vector of observed counts
- `p`: vector of null probabilities

Value

Graphical and numerical output

Author(s)

Homer White <hwhite0@georgetowncollege.edu>

Examples

```r
## Not run:
throws <- c(one=8,two=18,three=11,four=7,five=9,six=7)
SlowGoodness(throws,p=rep(1/6,6))
## End(Not run)
```

SmallExp

A Small Experiment

Description

Subjects in a hypothetical experiment

Format

A data frame with 16 observations on the following 3 variables.

- **name**: name of the subject
- **sex**: sex of the subject
- **athlete**: whether or not the subject is an athlete
Larvae on Stumps

Description

Biologists were interested in whether beetles prefer areas where beavers have cut down cottonwood trees. (The tree-stumps produce tender green shoots that beetles are thought to like.) 23 circular plots, all of equal area, were studied. For each plot the researchers counted the number of cottonwood stumps, and also the number of clusters of beetle larvae found in the plot.

Format

A data frame with 23 observations on the following 2 variables.

- **stumps** number of stumps in the plot
- **larvae** number of larvae clusters in the plot

Source

Basic Practice of Statistics, by Moore and McCabe.

Temperature in U.S. Cities

Description

Average temperatures for cities in the United States.

- **city** Name of the city
- **latitude** latitude of the city, in degrees north of the Equator
- **JanTemp** mean temperature of the city in January.
- **AprTemp** mean temperature of the city in April.
- **AugTemp** mean temperature of the city in August.

Format

A data frame with 20 observations on 5 variables.

Source

tExplore

Description

Plot the density curve of a t random variable at various degrees of freedom. Compare with the standard normal curve.

Usage

tExplore()

Value

Used only for graphical side effects.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
if (require(manipulate)) tExplore()

## End(Not run)
```

theme.rpres

Lattice Theme or R Presentations

Description

Modifies the current theme for use with lattice graphics in R Presentation documents. Increases size of title, axis labels and axis numbers, thickens some lines, etc.

Usage

theme.rpres()

Value

Returns a list to be supplied as the theme to the lattice function `trellis.par.set()`.

Note

Deprecated in favor of `themerpres()`. May not appear in future versions.
See Also

trellis.par.set, show.settings

Examples

trellis.par.set(theme=theme.rpres())

themerpres $Lattice \ Theme \ or \ R \ Presentations$

Description

Modifies the current theme for use with lattice graphics in R Presentation documents. Increases size of title, axis labels and axis numbers, thickens some lines, etc.

Usage

themerpres()

Value

Returns a list to be supplied as the theme to the lattice function trellis.par.set().

See Also

trellis.par.set, show.settings

Examples

trellis.par.set(theme=themerpres())

tips $Restaurant \ Tips$

Description

A waiter recorded all tips earned during a 2.5 month period in early 1990, along with other information about the customers who gave the tips. The variables are as follows:

* obs Observation number of event
* totbill The total bill
* tip Amount of the tip
* sex Sex of tipper (F or M)
* smoker Whether the tipper smokes: Yes or No
* day Day of the week
* time Whether the meal was during the Day or the Night
* size Number of people in the dining party
tornado

Format
A data frame with 244 rows and 8 variables

Source

Description
Tornado damage in the U.S., by state. Also includes Puerto Rico.
- state the state
- damage mean annual damage from tornados, over a five-year period, in millions of dollars

Format
A data frame with 51 observations on 2 variables.

Source
Moore and McCabe, The Basic Practice of Statistics.

Illustrating the t-statistic

Description
An app to explore the distribution of the t-statistic. The user takes one sample at a time from a given population. Graphical output updates the empirical distribution of the sample mean.

Usage
tSampler(form, data, max.sample.size=30, show.sample=FALSE)

Arguments
form An object of class formula, of the form ~x, where x is a numeric variable from the data frame supplied by:
data A dataframe, representing the imaginary population.
max.sample.size Maximum sample size on the slider.
show.sample If TRUE, the complete sample will be output to the console, in addition to the summary information.
Value

Graphical and numerical output.

Note

Uses manipulate.

Author(s)

Homer White <hwhite@georgetowncollege.edu>

Examples

```r
## Not run:
data(imgpop)
if (require(manipulate)) tSampler(~income,data=imgpop)

## End(Not run)
```

ttestGC

t-Procedures

Description

t-tests and confidence intervals for one and two samples.

Usage

```r
ttestGC(x=NULL,data=parent.frame(),mean=numeric(),sd=numeric(),n=numeric(),
mu=NULL,alternative=c("two.sided","less","greater"),var.equal=FALSE,
conf.level=0.95,graph=FALSE,first=NULL,verbose=TRUE)
```

Arguments

- **x**: If not NULL, then must be a formula. If a formula, then data must be a dataframe. For one sample t-procedures, x is of the form ~var. For two-sample procedures, x is of the form resp~exp, where exp is factor with two values. If x is of form ~var1-var2, then matched pairs procedures are performed.

- **data**: A data frame containing variables in formula x. If some variables are not in data, then they are searched for in the parent environment.

- **mean**: When not NULL, contains sample mean(s). Length 1 for one sample t-procedures, Length 2 for two-sample procedures.

- **sd**: When not NULL, contains sample standard deviation(s).

- **n**: When not NULL, contains sample size(s).

- **mu**: Contains the null value for the parameter of interest. If not set, no test is performed.
alternative "two.sided" requests computation of a two-sided P-value; other possible values are "less" and "greater".

var.equal When FALSE, use Welch's approximation to the degrees of freedom.

conf.level Number between 0 and 1 indicating the confidence-level of the interval supplied.

graph If TRUE, plot graph of P-value.

first If assigned, gives the value of the explanatory variable that is to count as the first sample.

verbose Indicate how much output goes to console

Value

A list of class "GCttest" Components of the list that may be usefully queried include: "statistic", "p.value", and "interval".

Author(s)

Homer White <hwhite@georgetowncollege.edu> for matched pairs.

Examples

#One-sample t, 95%-confidence interval only:
ttestGC(~fastest,data=m111survey)

#For other confidence levels, set argument conf.level as desired. For 90%-interval:
ttestGC(~fastest,data=m111survey,conf.level=0.90)

One-sample t, 95%-confidence interval and two-sided test with H_0: mu = 100:
ttestGC(~fastest,data=m111survey,mu=100)

#Two-sample t, 95%-confidence interval only:
ttestGC(fastest~sex,data=m111survey)

#control order of groups with argument first:
ttestGC(fastest~sex,data=m111survey,first="male")

Matched pairs, confidence interval with one-sided test, H_0: mu-d = 0:
ttestGC(~ideal_ht-height,data=m111survey,mu=0,alternative="greater")

#Summary data, one sample, one-sided test with H_0: mu = 52.5:
ttestGC(mean=55, sd=4, n=16, mu=52.5, alternative="greater")

#Summary data, two samples:
ttestGC(mean=c(50,55), sd=c(3,4), n=c(25,40), mu=0)
Type12Errors Type I and Type II Errors

Description
An app to explore the concepts of Type I and Type II errors, and the concept of power. We take samples from a population that is imagined to be normal, and perform the t-procedures for one mean. The Null Hypothesis is H0: mu=170. A slider allows us to vary the true mean mu.

Usage
Type12Errors()

Value
Graphical and numerical output.

Note
Uses manipulate.

Author(s)
Homer White <hwhite@georgetowncollege.edu>

Examples
Not run:
if (require(manipulate)) Type12Errors()

End(Not run)

ucdavis1 UC Davis #1

Description
Results of a survey of students at UC-Davis.

- Sex a factor with levels Female Male
- TV Number of hours spent watching TV per week
- computer number of hours spent on computer per week
- Sleep hours of sleep per night
- Seat a factor with levels Back Front Middle Where do you prefer to sit in class, when you have a choice?
Variability

- alcohol number of alcoholic drinks consumed per week
- Height height in inches
- momheight height of mother, in inches
- dadheight height of father, in inches
- exercise number of hours of exercise per week
- GPA grade point average
- class a factor with levels LibArts NonLib Student Category: liberal arts or not

Format

A data frame with 173 observations on 12 variables..

Source

Variability

Description

An app to investigate how the variance and sample size affects the shape of a histogram and violin plot generated from normal data. Summary data (minimum, median, mean, maximum, and quartiles) are displayed in the output for each random sample drawn.

Usage

Variability()

Value

Graphical and numerical output

Note

Uses histogram and bwplot from the lattice package.

Author(s)

Rebekah Robinson <rebekah_robinson@georgetowncollege.edu>

Examples

```r
## Not run:
if (require(manipulate)) Variability()

## End(Not run)
```
VaryCorrelation
Vary Correlation

Description
An app to illustrate the effectiveness of the correlation coefficient as a measure of the strength of a linear relationship.

Usage
```
VaryCorrelation(n=300)
```

Arguments
n number of randomly generated-points in the scatterplot.

Value
Graphical output.

Note
Uses manipulate in RStudio, and mvrnorm from package MASS.

Author(s)
Homer White <hwhite0@georgetowncollege.edu>

Examples
```
## Not run:
if(require(manipulate)) VaryCorrelation(n=500)

## End(Not run)
```

verlander

Description
PITCHf/x data on Justin Verlander, winner of the 2011 Cy Young Award. Covers his 2009 through 2012 seasons.
Format

A data frame with 15307 observations on the following 12 variables. Each observation is a single pitch.

- **season** The year of play
- **gamedate** Date of the game in which the pitch was thrown
- **pitch_type** Type of pitch thrown: CH (Change-up), CU (Curveball), FF (Four-Seam Fastball), FT (Two-Seam Fastball), SL (Slider). Pitch type is determined by computer algorithm.
- **balls** Current ball count
- **strikes** Current strike count
- **pitches** number of pitches previously thrown in the game
- **speed** speed of pitch (in mph). (When crossing plate?)
- **px** x-coordinate of pitch (in feet, measured from center of plate)
- **pz** vertical coordinate of pitch (in feet above plate)
- **pfx_x** the horizontal movement, in inches, of the pitch between the release point and home plate, as compared to a theoretical pitch thrown at the same speed with no spin-induced movement. Measured at 40 feet from home plate.
- **pfx_z** the vertical movement, in inches, of the pitch between the release point and home plate, as compared to a theoretical pitch thrown at the same speed with no spin-induced movement. Measured at 40 feet from home plate.
- **batter_hand** A factor with two values: L (left) and R (right).

Source

Description

A Study of Risky Behaviors in High School Seniors, from year 2003.

- **Sex**
- **Grades** Typical grades you earn in school
- **WtAction** What do you plan to do about your weight?
- **Seatbelt** How often do you wear a seat-belt?
- **Sunscreen** How much do you wear sunscreen?
- **Grades_1** Same as grades, but with some groups combined
- **Sun_1** Same as sunscreen, but with some groups combined
Format

A data frame with 3042 observations on 7 variables.

Source

Index

*Topic datasets
 alcohol, 4
 attitudes, 5
 beans, 8
 cabrera, 11
 chugtime, 14
 deathpen, 16
 FakeSchool, 20
 fuel, 21
 galton, 22
 gcfeeling, 22
 gcstudents, 23
 gss02, 23
 gss08, 24
 gss2012, 25
 hair_and_act, 25
 handheight, 26
 hanford1, 26
 hanford2, 27
 henderson, 28
 hofbatting, 29
 hofpitching, 30
 imagpop, 31
 iqsiblings, 32
 knifeforgunblock, 32
 labels, 33
 ledgejump, 33
 m111survey, 35
 m111surveyf12, 35
 m111surveyf13, 36
 music, 38
 napkins, 39
 nonresponse, 39
 nosmokeday, 40
 oldfaithful, 40
 ostrichtemp, 41
 Ovarian, 41
 pennstatet1, 44
 pushups, 54
 saltmarsh, 57
 sat, 61
 seals02, 61
 SmallExp, 65
 stumps, 66
 temperature, 66
 tips, 68
 tornado, 69
 ucdavis1, 72
 verlander, 74
 youthrisk03, 75

*Topic graphics
 theme.rpres, 67
 themerpres, 68

*Topic package
tigerstats-package, 4

 alcohol, 4
 attitudes, 5
 barchart, 6
 barchartGC, 6
 beans, 8
 BinomNorm, 8
 BinomSkew, 9
 binomtestGC, 9
 cabrera, 11
 ChisqSimSlow, 11
 chisqtestGC, 12
 chugtime, 14
 CIMean, 14
 CIProp, 15
 colPerc, 16
 deathpen, 16
 DtrellHist, 17
 DtrellScat, 17
 EmpRule, 18
 EmpRuleGC, 19
expCounts, 20
FakeSchool, 20
FindRegLine, 21
fuel, 21
galton, 22
gcfeeling, 22
gcstudents, 23
gss02, 23
gss08, 24
gss2012, 25
hair_and_act, 25
handheight, 26
hanford1, 26, 27
hanford2, 27
helpGC, 27
henderson, 28
hofbatting, 29
hofpitching, 30
imagpop, 31
iqsiblings, 32
knifeorgunblock, 32
labels, 33
ledgejump, 33
lmGC, 34
m111survey, 35
m111surveyfa12, 35
m111surveyfa13, 36
MeanSampler, 37
music, 38
napkins, 39
nonresponse, 39
nosmokeday, 40
oldfaithful, 40
ostrichtemp, 41
Ovarian, 41
pbinomGC, 42
pchisqGC, 43
pennstatetl, 44
plot.GC1m, 44
plot.polyGC, 45
pnormGC, 46
Points2Watch, 47
polyfitGC, 47
popsamp, 48
predict.GC1m, 49
predict.polyGC, 50
PropSampler, 50
proptestGC, 51
ptGC, 53
pushups, 54
qnormGC, 54
RandomExp, 55
RegEstimate, 56
rowPerc, 57
saltmarsh, 57
SampDist2Means, 58
SampDist2Props, 59
SampDistMean, 60
sat, 61
seals02, 61
ShallowReg, 62
show.settings, 68
SimpleRandom, 63, 63
SimpleRandom2, 63
Skewer, 64
SlowGoodness, 65
SmallExp, 65
stumps, 66
temperature, 66
tExplore, 67
theme.rpres, 67
themerpres, 68
tigerstats (tigerstats-package), 4
tigerstats-package, 4
tips, 68
tornado, 69
trellis.par.set, 67, 68
tSampler, 69
ttestGC, 70
Type1Errors, 72
ucdavis1, 72
Variability, 73
VaryCorrelation, 74
verlander, 74
INDEX

xtabs, 6

youthrisk03, 75